Skip to main content
Log in

Selective Synthesis of Wurtzite CdSe Nanorods and Zinc Blend CdSe Nanocrystals through a Convenient Solvothermal Route

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

By simply changing the reactants’ compositions, wurtzite CdSe nanorods and zinc blend CdSe nanoparticles were selectively synthesized through a convenient solvothermal route with the reaction of cadmium nitrate (Cd(NO3)2· 4H2O), hydrazine hydrate (N2H4· H2O), and Se in ethylenediamine (en) at 140°C. Effects of temperature and composition of the reactants were detected and the amount and gaining rate of Se2− ions were found to determine the morphology and structure of the final product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alivisatos A.P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  • Alivisatos A.P., Colvin V.L., Goldstein A.N. (1992). Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. J. Am. Chem. Soc. 114:5221–5230

    Article  Google Scholar 

  • Ascencio J.A., Santiago P., Rendon L., Pal U. (2003). Structural basis for homogeneous CdS nanorods: synthesis and HREM characterization. Appl. Phys. A. 78:5–7

    Article  Google Scholar 

  • Bashe T., Koberling F., Mews A. (2001). Oxygen-induced blinking of single CdSe nanocrystals. Adv. Mater. 13:672–676

    Article  Google Scholar 

  • Chen M., Gao L. (2004). Synthesis of laminar wurtzite CdSe nanocrystals from CdO at room temperature. Inorg. Chem. Commun. 7:673

    Article  CAS  Google Scholar 

  • Chen Y.F., Ji T.H., Rosenzweig Z. (2003). Synthesis of glyconanospheres containing luminescent CdSe-ZnS quantum dots. Nano. Lett. 3:581–584

    Article  CAS  Google Scholar 

  • Deng Z.X., Wang C., Sun X.M., Li Y.D. (2002). Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route. Inorg. Chem. 41:869–873

    Article  CAS  Google Scholar 

  • Deng Z.X., Li L., and Li Y.D. (2003). Novel inorganic–organic-layered structures: crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E, S, Se, Te) nanorods in ethylenediamine. Inorg. Chem. 42:2331–2341

    Article  CAS  Google Scholar 

  • Dong Y.J., Peng Q., Li Y.D. (2004). Semiconductor zinc chalcogenides nanofibers form 1-D molecular precursors. Inorg. Chem. Comm. 7:370–373

    Article  CAS  Google Scholar 

  • El-Sayed M.A. (2004). Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 37:326–333

    Article  CAS  Google Scholar 

  • Ge J.P., Y.D. Li & G.Q. Yang, 2002. Mechanism of aqueous ultrasonic reaction: controlled synthesis, luminescence properties of amorphous cluster and nanocrystalline CdSe. Chem. Comm. 1826–1827

  • Huynh W.U., Peng X.G. and Alivisatos A.P. (1999). CdSe nanocrystal rods/poly (3-hexylthiophene) composite photovoltaic devices. Adv. Mater. 11:923–927

    Article  CAS  Google Scholar 

  • Huynh W.U., Dittmer J.J., Alivisatos A.P. (2002). Hybrid nanorod-polymer solar cells. Science 295:2425–2427

    Article  CAS  Google Scholar 

  • Li Y.D., Ding Y., Zhang Y., Qian Y.T. (1999a). Photophysical properties of ZnS quantum dots. J. Phys. Chem. Solids 60:13

    Article  CAS  Google Scholar 

  • Li Y.D., Liao H.W., Ding Y., Fan Y., Zhang Y., Qian Y.T. (1999b). Solvothermal elemental direct reaction to CdE(E = S, Se, Te) semiconductor nanorod. Inorg. Chem. 38:1382–1387

    Article  CAS  Google Scholar 

  • Li Y.D., Wang J.W., Deng Z.X. (2001). Bismuth nanotubes: a rational low temperature synthetic route. J. Am. Chem. Soc. 123:9904

    Article  CAS  Google Scholar 

  • Li Y.D., Li X.L., Deng Z.X., Zhou B.C., Fan S.S., Wang J.W., Sun X.M. (2002). From inorganic-surfactant mesostructrue to metallic tungsten nanowire. Angew. Chem. Int. Ed. 41:333–335

    Article  CAS  Google Scholar 

  • Li J.P., Xu Y., Wu D., Sun Y.H. (2004a). Hydrothermal synthesis of novel sandwich-like structured ZnS/octylamine hybrid nanosheets. Solid. State Commun. 130:619–622

    Article  CAS  Google Scholar 

  • Li J.P., Xu Y., Wu D., Sun Y.H. (2004b). Novel lamellar mesostructured zinc sulfide nanofibers. Chem. Lett. 33:718–719

    Article  Google Scholar 

  • Mitchell G.P., Mirkin C.A., Letsinger R.L. (1999). Programmed assembly of DNA functionalized quantum dots J. Am. Chem. Soc. 121:8122–8123

    Article  CAS  Google Scholar 

  • Nasr C., Hotchandani S., Kim W.Y., Kamat P.V. (1997). Photoelectrochemistry of Composite Semiconductor Thin Films. Photosensitization of SnO2/CdS Coupled Nanocrystallites with a Ruthenium Polypyridyl Complex. J. Phys. Chem. 101:7480–7487

    CAS  Google Scholar 

  • Pal U., Santiago P., Chavez J., Ascencio J.A. (2005). Structure and growth mechanism study of wurtzite CdSe nanorods grown by solvothermal techniques. J. Nanosci. Nanotech. 5:609–614

    Article  CAS  Google Scholar 

  • Peng Z.A., Peng X.G. (2001). Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 123:1389–1395

    Article  CAS  Google Scholar 

  • Peng Z.A., Peng X.G. (2002). Nearly nonodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124:3343–3353

    Article  CAS  Google Scholar 

  • Peng X.G., Wickham J., Alivisatos A.P. (1998). Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120:5343–5344

    Article  CAS  Google Scholar 

  • Peng Q., Dong Y.J., Deng Z.X., Li Y.D. (2002). Selective synthesis and characterization of CdSe nanorods and fractal nanocrystals. Inorg. Chem. 41:5249–5254

    Article  CAS  Google Scholar 

  • Qu L.H., Peng Z.A., Peng X.G. (2001). Alternative routes toward high quality CdSe nanocrystals. Nano. Lett. 1:333–337

    Article  CAS  Google Scholar 

  • Wang J.W., Deng Z.X., Li Y.D. (2002). Synthesis and characterization of Sb2Se3 nanorods. Mater. Res. Bull. 37:495

    Article  CAS  Google Scholar 

  • Wang X., Li Y.D. (2002). Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124:2880

    Article  CAS  Google Scholar 

  • Yang J., Zeng J.H., Yu S.H., Yang L., Zhou G.E., Qian Y.T.(2000). Formation process of CdS nanorods via solvothermal route. Chem. Mater. 12:3259–3263

    Article  CAS  Google Scholar 

  • Yu D., Wang C.J., Philipe G.S. (2003). n-Type conducting CdSe nanocrystal solids. Science 300:1277–1280

    Article  CAS  Google Scholar 

  • Yu S.H., Yang J., Han Z.H., Yang R.Y., Qian Y.T., Zhang Y.H. (1999). Novel slovothermal fabrication of CdS x Se1-x nanowires. J. Solid State Chem. 147:637–640

    Article  CAS  Google Scholar 

  • Zhong W.Z., Wang B.G., Shi E.W., Li W.J., Hua S.K. (1998). Polar growth and twinning mechanisms of ZnS (sphalerite) crystals under hydrothermal conditions 27:1–7

    CAS  Google Scholar 

  • Zhu Y.C., Y. Bando & Y. Uemura, 2003. ZnS–Zn nanocables and ZnS nanotubes. Chem. Comm. 836–837

Download references

Acknowledgement

Financial support from Zhejiang Natural Science Foundation Y404380 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiao Lai.

Additional information

Dong Wu and Guo-Qiao Lai contributed equally to this paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Qiu, HY., Xu, Y. et al. Selective Synthesis of Wurtzite CdSe Nanorods and Zinc Blend CdSe Nanocrystals through a Convenient Solvothermal Route. J Nanopart Res 9, 745–752 (2007). https://doi.org/10.1007/s11051-006-9100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9100-y

Key words

Navigation