Skip to main content
Log in

Growth and magnetic behavior of bismuth substituted yttrium iron garnet nanoparticles

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Crystal growth and the magnetic properties of bismuth substituted yttrium iron garnet (Bi-YIG) nanoparticles were studied with particular focus on the bismuth composition dependence of the magnetic properties of the particles and the effects of annealing on the garnet phase formation. The Bi-YIG nanoparticles of 47–67 nm in size can be chemically synthesized when they are annealed at 650–850 °C. Both the lattice constant and the magnetization of the garnet nanoparticles linearly increase when the bismuth composition in the Bi-YIG particles increases. We have found that chemically synthesized nanoparticles transform from the amorphous to the garnet phase when annealed at temperatures below 650 °C, while the onset of magnetic moment of iron in the garnet nanoparticles is observed slightly above 650 °C. According to Mössbauer effect measurements, the hyperfine fields of 57Fe at the tetrahedral and octahedral sites in the garnet are 39 and 48 T, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avrami M., (1939) Kinetics of phase change. I. General theory. J. Chem. Phys. 7:1103–1112

    Article  CAS  Google Scholar 

  • Avrami M., (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8:212–224

    Article  CAS  Google Scholar 

  • Avrami M., (1941) Granulation, phase change, and microstructure kinetics of phase change, III. J. Chem. Phys. 9:177–184

    Article  CAS  Google Scholar 

  • Crossley W.A., Cooper R.W., Page J.L., van Stapele R.P. (1969) Faraday rotation in rare-earth iron garnets. Phys. Rev. 181:896–904

    Article  CAS  Google Scholar 

  • Hansen P., Witter K., Tolksdorf W. (1983a) Magnetic and magneto-optical properties of bismuth-substituted gadolinium iron garnet films. Phys. Rev. B 27:4375–4383

    Article  CAS  Google Scholar 

  • Hansen P., Witter K., Tolksdorf W. (1983b) Magnetic and magneto-optic properties of lead- and bismuth-substituted yttrium iron garnet films. Phys. Rev. B 27:6608–6625

    Article  CAS  Google Scholar 

  • Kahl S., Grishin A.M. (2004) Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal. Appl. Phys. Lett. 84:1438–1440

    Article  CAS  Google Scholar 

  • Kahn F.J., Pershan P.S., Remeika J.P. (1969) Ultraviolet magneto-optical properties of single-crystal orthoferrites garnets, and other ferric oxide compounds. Phys. Rev. 186:891–918

    Article  CAS  Google Scholar 

  • Kim H., Grishin A., Rao K.V. (2001) Giant Faraday rotation of blue light in epitaxial Ce X Y3-X Fe5O12 films grown by pulsed laser deposition. J. Appl. Phys. 89:4380–4383

    Article  CAS  Google Scholar 

  • Kim T.Y., Hirano T., Kitamoto Y., Yamazaki Y. (2003) Novel nanoparticle milling process for Bi-YIG dispersed transparent films. IEEE Trans. Magn. 39:2078–2080

    Article  CAS  Google Scholar 

  • Kodama R.H., Berkowitz A.E. (1999) Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59:6321–6336

    Article  CAS  Google Scholar 

  • Kurumida J., Chang N.S. (1998) Experimental investigation of the nonlinear interaction between optical guided waves and magnetostatic forward volume waves in a Bi-YIG film. IEEE Trans. Magn. 34:1399–1401

    Article  CAS  Google Scholar 

  • Lacklison D.E., Scott G.B., Ralph H.I., Page J.L. (1973) Garnets with high magnetooptic figures of merit in the visible region. IEEE Trans. Magn. 9:457–460

    Article  CAS  Google Scholar 

  • Miura N., Kido G., Oguro I., Kawauchi K., Chikazumi S., Dillon Jr. J.F., Van Uitert L.G. (1977) Faraday rotation observed for iron garnets in megagauss fields. Physica B&C 86–88:1219–1220

    Article  Google Scholar 

  • Nomura K., Hanai T., Sadamoto R., Ujihira Y., Ryuo T., Tanno M. (1994) Conversion electron Mössbauer spectroscopic study of YIG substituted with Bi, Ti, Ga and La. Hyperfine Interact. 84:421–426

    Article  CAS  Google Scholar 

  • Sánchez R.D., Rivas J., Vaqueiro P., López-Quintela M.A., Caeiro D. (2002) Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method. J. Magn. Magn. Magn. 247:92–98

    Google Scholar 

  • Scott G.B., Lacklison D.E. (1976) Magnetooptic properties and applications of bismuth substituted iron garnets. IEEE Trans. Magn. 12:292–311

    Article  Google Scholar 

  • Shinagawa K., Tobita E., Ando K., Saito T., Tsushima T. (1997) Charge transfer-originated large Faraday rotation in Rh4+-substituted magnetic garnets. J. Appl. Phys. 81:1368–1371

    Article  CAS  Google Scholar 

  • Shintaku T., Tate A., Mino S. (1997) Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy. Appl. Phys. Lett. 71:1640–1642

    Article  CAS  Google Scholar 

  • Šimša J., Le Gall H., Šimšová J., Koláček J., Le Paillier-Malécot A. (1984) Spectral dependences of Faraday rotation inY3-X Bi X Fe5O12. IEEE Trans. Magn. Mag. 20:1001–1003

    Article  Google Scholar 

  • Strocka B., Holst P., Toklsdorf W. (1978) An empirical formula for the calculation of lattice constants of oxide garnets based on substituted yttrium- and gadolinium-iron garnets. Phillips J. Res. 33:186–202

    CAS  Google Scholar 

  • Wemple S.H., Dillon Jr. J.F., Van Uitert L.G., Grodkiewicz W.H. (1973) Iron garnet crystals for magneto-optic light modulators at \(1.064\,\upmu\)m. Appl. Phys. Lett. 22:331–333

    Article  CAS  Google Scholar 

  • Wittekoek S., Pompa T.J.A. (1973) Magneto-optic Kerr rotation of bismuth-substituted iron garnets in the 2–5.2 eV spectral range. J. Appl. Phys. 44:5560–5566

    Article  CAS  Google Scholar 

  • Wittekoek S., Pompa T.J.A., Robertson J.M., Bongers P.F. (1975) Magneto-optic spectra and the dielectric tensor elements of bismuth substituted iron garnets at photon energies between 2.2–5.2 eV. Phys. Rev. B 12:2777–2788

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T., Nasu, S. & Shima, M. Growth and magnetic behavior of bismuth substituted yttrium iron garnet nanoparticles. J Nanopart Res 9, 737–743 (2007). https://doi.org/10.1007/s11051-006-9082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9082-9

Keywords

Navigation