Skip to main content

Highly stable Ag nanoparticles in agar-agar matrix as inorganic–organic hybrid

Abstract

A novel synthesis of inorganic–organic hybrid films containing well dispersed and almost uniform size Ag nanoparticles in agar-agar matrix has been reported. The films are found to be highly stable for more than a year. The colloidal particles of Ag can be obtained in large quantities in the form of a film or in the gel form when dispersed in agar-agar or by dissolving in a suitable solvent as solution. Characterization has been done by UV–visible spectroscopy and TEM. The hybrid may be of interest to study third-order non-linear susceptibility.

This is a preview of subscription content, access via your institution.

References

  1. Ahmadi T.S., Wang L., Green T.C., Heinlein A., El-Sayed M.A. (1996) Science. 272:1924–1926

    Article  CAS  Google Scholar 

  2. Ayyappan S., Srinivasa Goplan R., Subbanna G.N., Rao C.N.R. (1997) J. Mater. Res. 12:398–401

    CAS  Google Scholar 

  3. Bharathi S., Fishelson N., Lev O. (1999) Langmuir 15:1929–1937

    Article  CAS  Google Scholar 

  4. Bloemer M.J., Haus J.W., Ashley P.R. (1990) J. Opt. Soc. Am. B. 7:790–795

    CAS  Article  Google Scholar 

  5. Cho S.H., Lee S., Ku D.Y., Lee T.S., Cheong B., Kim W.M., Lee K.S. (2004) Thin Solid Films 447:68–73

    Article  CAS  Google Scholar 

  6. Dalacu D., Martinu L. (2000) J. Appl. Phys. 87:228–235

    Article  CAS  Google Scholar 

  7. Dick L.A., McFarland A.D., Haynes C.L., Van Duyne R.P. (2002) J. Phys. Chem. B. 106:853–860

    Article  CAS  Google Scholar 

  8. Dirix Y., Bastiaansen C., Caseri W., Smith P. (1999) J. Mater. Sci. 34:3589–3866

    Article  CAS  Google Scholar 

  9. Ebbesen T.W., Lezec H.J., Ghaemi H.F., Thio T., Wolff P.A. (1998) Nature 391:667–669

    Article  CAS  Google Scholar 

  10. Elghanian R., Storhoff J.J., Mucic R.C., Letsinger R.L., Mirkin C.A. (1997) Science 277:1078–1081

    Article  CAS  Google Scholar 

  11. Fritzsche W., Porwol H., Wiegand A., Born Mann S., Kohler J.M. (1998) Nanostructured Materials 10:89–97

    Article  CAS  Google Scholar 

  12. Hache F., Ricard D., Flytzanis C. (1986) J. Opt. Soc. Am. B. 3:1647–1655

    CAS  Google Scholar 

  13. Hao E., Kelly K.L., Hupp J.T., Schatz G.C. (2002) J. Am. Chem. Soc. 124:15182–15183

    Article  CAS  Google Scholar 

  14. He R., Qian X., Yin J., Zhu Z. (2002) J. Mater. Chem. 12:3783–3786

    Article  CAS  Google Scholar 

  15. Hilger A., Cuppers N., Tenfelde M., Kreibig U. (2000) Eur. Phys. J. D. 10:115–118

    Article  CAS  Google Scholar 

  16. Hovel H., Fritz S., Hilger A., Kreibig U., Vollmer M. (1993) Phy. Rev. B. 48:18178–18188

    Article  Google Scholar 

  17. Jensen T.R., Duval M.L., Kelly L., Lazarides A.A., Schatz G.C., Van Duyne R.P. (1999) J. Phys. Chem. B. 103:1846–1854

    Article  CAS  Google Scholar 

  18. Kawabata A., Kubo R. (1966) J. Phys. Soc. Jpn. 21:1765–1772

    Article  CAS  Google Scholar 

  19. Kim T.-G., Kim Y.W., Kim J.S., Park B. (2004) J. Mater. Res. 19:1400–1407

    Article  CAS  Google Scholar 

  20. Kreibig U., Genzel L. (1985) Surf. Sci. 156:678

    Article  CAS  Google Scholar 

  21. Kreibig U., Vollmer M. (1995). Optical Properties of Metal Clusters. Springer, New York

    Google Scholar 

  22. Kvitek L., Prucek R., Panacek A., Novotny R., Hrbac J., Zboril R. (2005) J. Mater. Chem. 15:1099–1105

    Article  CAS  Google Scholar 

  23. Duval Malinsky, Kelly K.L., Schatz G.C., Van Duyne R.P. (2001) J. Am. Chem. Soc. 123(7):1471–1482

    Article  CAS  Google Scholar 

  24. Mbhele Z.H., Salemane M.G., van Sittert C.G.C.E., Nedeljkovic J.M., Djokovic V., Luyt A.S. (2003) Chem. Mater. 15:5019–5024

    Article  CAS  Google Scholar 

  25. Mie G. (1908) Ann. Physik. 25:377–445

    Article  CAS  Google Scholar 

  26. Mirkin C.A., Taton T.A. (2000) Nature 405:626–627

    Article  CAS  Google Scholar 

  27. Myong H., Lim, Ast D.G. (2001) Adv. Mater. 13:718–721

    Article  Google Scholar 

  28. Nie S., Emory S.R. (1997) Science 275:1102–1106

    Article  CAS  Google Scholar 

  29. Pastoriza-Santos I., Liz-Marzan L.M. (1999) Langmuir 15:948–951

    Article  CAS  Google Scholar 

  30. Pastoriza-Santos I., Liz-Marzan L.M. (2000) Pure Appl. Chem. 72:83–90

    CAS  Google Scholar 

  31. Pastoriza-Santos I., Liz-Marzan L.M. (2002) Langmuir 18:2888–2894

    Article  CAS  Google Scholar 

  32. Pendry J.B. (1999) Science 285:1687–1688

    Article  CAS  Google Scholar 

  33. Porel S., Singh S., Sree Harsha S., Narayana Rao D., Radhakrishnan T.P. (2005) Chem. Mater. 17:9–12

    Article  CAS  Google Scholar 

  34. Puntes V.F., Krishnan K.M., Alivisatos A.P. (2001) Science 291:2115–2117

    Article  CAS  Google Scholar 

  35. Rodriguez-Gattorno G., Diaz D., Rendon L., Hernandez-Segura G.O. (2002) J. Phys.Chem. B. 106:2482–2487

    Article  CAS  Google Scholar 

  36. Storhoff J.J., Elghanian R., Mucic R.C., Mirkin C.A., Letsinger R.L. (1998) J. Am. Chem. Soc. 120:1959–1964

    Article  CAS  Google Scholar 

  37. Sun S., Murray C.B., Weller D., Folks L., Moser A. (2000) Science 287:1989–1992

    Article  CAS  Google Scholar 

  38. Sun Y., Xia Y. (2003) Adv. Mater. 15:695–699

    Article  CAS  Google Scholar 

  39. Tam F., Moran C., Halas N. (2004) J. Phys. Chem. B. 108:17290–17294

    Article  CAS  Google Scholar 

  40. Tombs M.P., Harding S.E. (1998). An Introduction to Polysaccharide Technology. Taylor and Francis, London

    Google Scholar 

  41. Tombs, Harding (1998). An Introduction to Polysaccharide Technology. Taylor and Francis, London

    Google Scholar 

  42. Wang Q., Wang S., Hang W., Gong Q. (2005) J. Phys. D: Appl. Phys. 38:389–391

    Article  CAS  Google Scholar 

  43. Xu G., Tazawa M., Jin P., Nakao S. (2005) Appl. Phys. A. 80:1535–1540

    Article  CAS  Google Scholar 

  44. Yin Y., Li Z.-Y., Zhong Z., Gates B., Xia Y., Venkateswaran S. (2002) J. Mater. Chem. 12:522–527

    Article  CAS  Google Scholar 

  45. Yu Y.-Y., Chang S.-S., Lee C.-L., Chris Wang C.R. (1997) J. Phys. Chem. B. 101:6661–6664

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H.N. Vasan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muthuswamy, E., Ramadevi, S.S., Vasan, H. et al. Highly stable Ag nanoparticles in agar-agar matrix as inorganic–organic hybrid. J Nanopart Res 9, 561–567 (2007). https://doi.org/10.1007/s11051-006-9071-z

Download citation

Keywords

  • Ag nanoparticles
  • agar-agar
  • inorganic–organic hybrid
  • nanomaterials