Skip to main content
Log in

Solvothermal removal of the organic template from L 3 (“sponge”) templated silica monoliths

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We compare the methods of continuous solvent (Soxhlet) and supercritical solvent extractions for the removal of the organic template from nanostructured silica monoliths. Our monoliths are formed by templating the L 3 liquid crystal phase of cetylpyridinium chloride in aqueous solutions with tetramethoxy silane. The monoliths that result from both Soxhlet and supercritical extraction methods are mechanically robust, optically clear, and free of cracks. The Soxhlet method compares favorably with supercritical solvent extraction in that equivalent L 3-templated silica can be synthesized without the use of specialized reactor hardware or higher temperatures and high pressures, while avoiding noxious byproducts. The comparative effectiveness of various solvents in the Soxhlet process is related to the Hildebrand solubility parameter, determined by the effective surface area of the extracted silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W., McCullen S.B., Higgins J.B. & Schlenker J.L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates.J. Am. Chem. Soc. 114(27):10834–10843

    Article  CAS  Google Scholar 

  • Bhansali S., A.-S. Malik, I. Akartuna, D.M. Dabbs, J.C. Carbeck & I.A. Aksay, 2006. The stability of L3 sponge phase in acidic solutions. Langmuir (in review).

  • Brennecke J.F. (1997). Molecular trees for green chemistry.Nature 389(6649):333–334

    Article  CAS  Google Scholar 

  • Brinker C.J., Scherer G.W. (1990) Sol-Gel Science. Academic Press, Inc., New York, pp. 444–448 and 493–505

    Google Scholar 

  • Burke, J. 1984, In: Jensen C. ed., AIC Book and Paper Group Annual, Vol. 3, American Institute for Conservation of Historic and Artistic Works, Washington, D.C., pp. 13–58

  • Dabbs D.M., Aksay I.A. (2000). Self-assembled ceramics produced by complex–fluid templation. Annu. Rev. Phys. Chem. 51:601–22

    Article  CAS  Google Scholar 

  • Dale Spall F.K. & Laintz K.E., 1998. In: McHardy, J. & Sawan S.P. eds. Supercritical Fluid Cleaning; Fundamentals, Technology, and Applications, Noyes Publications, Westwood, NJ, pp. 162–194

  • Darr J.A., Poliakoff M. (1999). New directions in inorganic and metal–organic coordination chemistry in supercritical fluids.Chem. Rev. 99(2):495–541

    Article  CAS  Google Scholar 

  • van Grieken R., Calleja G., Stucky G.D., Melero J.A., Garcia R.A., Iglesias J. (2003). Supercritical fluid extraction of a nonionic surfactant template from SBA-15 materials and consequences on the porous structure.Langmuir 19(9):3966–3973

    Article  Google Scholar 

  • Kawi S., Lai M.W. (2002). Supercritical fluid extraction of surfactant from Si-MCM-41.AIChE Journal 48(7):1572–1580

    Article  CAS  Google Scholar 

  • Kim S.S., Zhang W.Z., Pinnavaia T.J. (1998). Ultrastable mesostructured silica vesicles.Science 282(5392):1302–1305

    Article  CAS  Google Scholar 

  • Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid–crystal templated mechanism.Nature 359(6397):710–712

    Article  CAS  Google Scholar 

  • Lee H., Zones S.I., Davis M.E. (2003). A combustion-free methodology for synthesizing zeolites and zeolite-like materials.Nature 425(6956):385–388

    Article  CAS  Google Scholar 

  • Lei N., Safinya C.R., Roux D., Liang K.S. (1997). Synchrotron x-ray-scattering studies on the sodium dodecyl sulfate–water–pentanol–dodecane L3 sponge phase.Phys. Rev.E 56(1):608–613

    Article  CAS  Google Scholar 

  • Malik A.-S., D.M. Dabbs, H.E. Katz & I.A. Aksay, 2006.Silica monoliths templated on L3 liquid crystal. Langmuir 22(1), 325–331

    Article  CAS  Google Scholar 

  • McGehee M.D., S.M. Gruner, N. Yao, C.M. Chun, A. Navrotsky, I.A. Aksay, 1994. Proc. 52nd Ann. Meeting Microscopy Soc. Am.; Bailey G.W., A.J. Garret-Reed, eds. San Francisco Press: San Francisco, CA, 1994; pp. 448–449

  • McGrath K.M. (1997). Formation of two lamellar phases in the dilute region of a quasiternary surfactant system.Langmuir 13(7):1987–1995

    Article  CAS  Google Scholar 

  • McGrath K.M., D.M. Dabbs, N. Yao, I.A. Aksay & S.M. Gruner, 1997. The formation of a silicate L3 phase with continuously adjustable pore sizes. Science, 277 (5325), 552–556; ibid., 1998, 279(5355), 1289

    Google Scholar 

  • McGrath K.M., Dabbs D.M., Yao N., Edler K.J., Aksay I.A., Gruner S.M. (2000). Silica gels with tunable nanopores through templating of the L3 phase.Langmuir 16(2):398–406

    Article  CAS  Google Scholar 

  • See for example, McHardy J. & S. P. Sawan eds., 1998. Supercritical Fluid Cleaning; Fundamentals, Technology, and Applications, Noyes Publications, Westwood, NJ, 1998

  • Noble K., Seddon A.B., Turner M.L., Chevalier P., Ou D.L. (2003). Porous siloxane-silica hybrid materials by sol–gel processing.Journal of Sol–Gel Science and Technology 26(1–3):419–423

    Article  CAS  Google Scholar 

  • Patarin J. (2004). Mild methods for removing organic templates from inorganic host materials.Angew.Chemie-Intern.Ed. 43(30):3878–3880

    Article  CAS  Google Scholar 

  • Pinnavaia T.J. & M.F. Thorpe, eds., 1996. Access in Nanoporous Materials, Plenum, New York

  • Porte G. (1992). Lamellar phases and disordered phases of fluid bilayer membranes.J.Phys.-Condensed Matter 4(45):8649–8670

    Article  Google Scholar 

  • Prakash S.S., Brinker C.J., Hurd A.J., Rao S.M. (1995). Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage.Nature 374(6521):439–443

    Article  CAS  Google Scholar 

  • Skouri M., Marignan J., Appell J., Porte G. (1991). Fluid membranes in the “semirigid regime”: Scale-invariance.J.Phys.II 1(9):1121–1132

    Article  CAS  Google Scholar 

  • Strey R., Jahn W., Porte G., Bassereau P. (1990). Freeze fracture electron microscopy of dilute lamellar and anomalous isotropic (L3) phases.Langmuir 6(11):1635–1639

    Article  CAS  Google Scholar 

  • Tanev P.T., Pinnavaia T.J. (1996). Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies.Science 271(5253):1267–1269

    Article  CAS  Google Scholar 

  • Whitehurst, D.D. 1992. Method to recover organic templates from freshly synthesized molecular sieves. U.S. Patent#5,143,879; September 1, 1992

Download references

Acknowledgements

Support for this research was provided by support from Lucent Technologies and the DARPA-sponsored MURI program at Princeton University (Grant # DAAH04-95-1-0102). Additional support was provided by NASA under the BIMat URETI (Grant # NCC-1-02037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilhan A. Aksay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabbs, D.M., Mulders, N. & Aksay, I.A. Solvothermal removal of the organic template from L 3 (“sponge”) templated silica monoliths. J Nanopart Res 8, 603–614 (2006). https://doi.org/10.1007/s11051-005-9063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9063-4

Keywords

Navigation