Skip to main content
Log in

The seminal literature of nanotechnology research

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A generally weak area in research papers, reports, and reviews is the complete identification of seminal background documents that formed the building blocks for these papers. A method for systematically determining these seminal references is presented. Citation-assisted background (CAB) is based on the assumption that seminal documents tend to be highly cited. Application of CAB to the field of nanotechnology research is presented. While CAB is a highly systematic approach for identifying seminal references, it serves as a supplement and is not a substitute for the judgment of the authors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandre M., Dubois P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science & Engineering R-Reports. 28(1–2):1–63

    Article  Google Scholar 

  • Alivisatos A.P. (1996a). Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry. 100(31):13226–13239

    Article  CAS  Google Scholar 

  • Alivisatos A.P., (1996b). Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    CAS  Google Scholar 

  • Arakawa Y., Sakaki H. (1982). Multidimensional quantum well laser and temperature-dependence of its threshold current. Applied Physics Letters 40(11):939–941

    Article  CAS  Google Scholar 

  • Aviram A., Ratner M.A. (1974). Molecular rectifiers. Chemical Physics Letters. 29(2):277–283

    Article  CAS  Google Scholar 

  • Avrami M. (1939). Kinetics of phase change. I: General theory. J. Chem. Phys. 7:1103

    Article  CAS  Google Scholar 

  • Avrami M. (1940). Kinetics of phase change. II: Transformation-Time relations for random distribution of nuclei. J. Chem. Phys. 8:212

    Article  CAS  Google Scholar 

  • Avrami M. (1941). Kinetics of phase change. III: Granulation, Phase Change an Microstructures. J. Chem. Phys. 9:177

    Article  CAS  Google Scholar 

  • Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB. (2002). Structure-assigned optical spectra of single-walled carbon nanotubes. Science. 298 (5602):2361–2366

    Article  PubMed  CAS  Google Scholar 

  • Bachtold A., Hadley P., Nakanishi T., Dekker C. (2001). Logic circuits with carbon nanotube transistors. Science. 294(5545):1317–1320

    Article  PubMed  CAS  Google Scholar 

  • Baibich M.N., Broto J.M., Fert A., Vandau F.N., Petroff F., Eitenne P., Creuzet G., Friederich A., Chazelas J. (1988). Giant Magnetoresistance of (001)Fe/(001) Cr Magnetic Superlattices. Physical Review Letters. 61(21):2472–2475

    Article  PubMed  CAS  Google Scholar 

  • Barrett E.P., Joyner L.G., Halenda P.P. (1951). The determination of pore volume and area distributions in porous substances 1. Computations from nitrogen isotherms. Journal of the American Chemical Society 73(1):373–380

    Article  CAS  Google Scholar 

  • Baughman R.H., Zakhidov A.A., de Heer W.A. (2002). Carbon nanotubes - the route toward applications. Science. 297(5582):787–792

    Article  PubMed  CAS  Google Scholar 

  • Becke A.D. (1993). Density-Functional thermochemistry 3 the role of exact exchange. Journal of Chemical Physics. 98(7):5648–5652

    Article  CAS  Google Scholar 

  • Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W., McCullen S.B., Higgins J.B., Schlenker J.I. (1992). A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society. 114(27):10834–10843

    Article  CAS  Google Scholar 

  • Bethune D.S., Kiang C.H., Devries M.S., Gorman G., Savoy R., Vazquez J., Beyers R. (1993). Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature 363(6430):605–607

    Article  CAS  Google Scholar 

  • Bhushan B., 2004. Springer Handbook of Nanotechnology. Springer

  • Bimberg D., M. Grundmann & L.N. Ledentsov, 1999. Quantum Dot Heterostructures. John Wiley & Sons

  • Binnig G., Rohrer H., Gerber C., Weibel E. (1982). Surface studies by scanning tunneling microscopy. Physical Review Letters. 49(1):57–61

    Article  Google Scholar 

  • Binnig G., Quate C.F., Gerber C. (1986). Atomic Force Microscope. Physical Review Letters. 56(9):930–933

    Article  PubMed  Google Scholar 

  • Bockrath M., Cobden D.H., Lu J., Rinzler A.G., Smalley R.E., Balents T., McEuen P.L. (1999). Luttinger-liquid behaviour in carbon nanotubes. Nature. 397(6720):598–601

    Article  CAS  Google Scholar 

  • Brinker C.J. & Scherer G. 1990. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press

  • Bruchez M., Moronne M., Gin P., Weiss S., Alivisatos A.P., (1998). Semiconductor nanocrystals as fluorescent biological labels. Science. 281(5385):2013–2016

    PubMed  CAS  Google Scholar 

  • Bruggeman D.A.G., (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Systemen Ann. Phys. 5:636

    Google Scholar 

  • Brunnauer S., P.H. Emmett, E. Teller, 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60

  • Brus L.E. (1984). Electron-electron and electron–hole interactions in small semiconductor crystallites - the size dependence of the lowest excited electronic state. Journal of Chemical Physics. 80(9):4403–4409

    Article  CAS  Google Scholar 

  • Brus L.E. (1986). Electronic wave-functions in semiconductor clusters - experiment and theory. Journal of Physical Chemistry 90(12):2555–2560

    Article  CAS  Google Scholar 

  • Brust M., Walker M., Bethell D., Schiffrin D.J., Whyman R. (1994). Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. Journal of the Chemical Society-Chemical Communications (7):801–802

    Article  Google Scholar 

  • Burroughes J.H., Bradley D.D.C., Brown A.R., Marks R.N., Mackay K., Friend R.H., Burns P.L., Holmes A.B. (1990). Light-Emitting-diodes based on conjugated polymers. Nature 347(6293):539–541

    Article  CAS  Google Scholar 

  • Canham L.T. (1990). Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters 57(10):1046–1048

    Article  CAS  Google Scholar 

  • Ceperley D.M., Alder B.J. (1980). Ground-State of the electron-gas by a stochastic method. Physical Review Letters 45(7):566–569

    Article  CAS  Google Scholar 

  • Chan W.C.W., Nie S.M. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 281(5385):2016–2018

    Article  PubMed  CAS  Google Scholar 

  • Chen J., Hamon M.A., Hu H., Chen Y.S., Rao A.M., Eklund P.C., Haddon R.C. (1998). Solution properties of single-walled carbon nanotubes. Science 282(5386):95–98

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  • Chen R.J., Zhan Y.G., Wang D.W., Dai H.J. (2001). Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society 123(16):3838–3839

    Article  PubMed  CAS  Google Scholar 

  • Choi W.B., Chung D.S., Kang J.H., Kim H.Y., Jin Y.W., Han I.T., Lee Y.H., Jung J.E., Lee N.S., Park G.S., Kim J.M. (1999). Fully sealed, high-brightness carbon-nanotube field-emission display. Applied Physics Letters 75(20):3129–3131

    Article  CAS  Google Scholar 

  • Chopra N.G., Luyken R.J., Cherrey K., Crespi V.H., Cohen M.L., Louie S.G., Zettl A. (1995). Science. Boron-Nitride Nanotubes. 269(5226):966–967

    CAS  Google Scholar 

  • Coey J.M.D. (1971). Non-collinear spin arrangement in ultrafine ferrimagnetic crystallites. Physical Review Letters. 27(17):1140–1143

    Article  CAS  Google Scholar 

  • Collins P.G., Bradley K., Ishigami M., Zettl A. (2000). Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804

    Article  PubMed  CAS  Google Scholar 

  • Colton R.J. (2004). Nanoscale measurements and manipulation. Journal of Vacuum Science and Technology B. 22(4):1609–1635

    Article  CAS  Google Scholar 

  • Colvin V.L., Schlamp M.C., Alivisatos A.P., (1994). Light-Emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370 (6488):354–357

    Article  CAS  Google Scholar 

  • Cronenwett S.M., Oosterkamp T.H., Kouwenhoven L.P. (1998). A tunable Kondo effect in quantum dots. Science 281(5376):540–544

    Article  PubMed  CAS  Google Scholar 

  • Cui Y., Lieber C.M. (2001). Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science. 291(5505):851–853

    Article  PubMed  CAS  Google Scholar 

  • Cui Y., Wei Q.Q., Park H.K., Lieber C.M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    Article  PubMed  CAS  Google Scholar 

  • Cullis A.G., Canham L.T., Calcott P.D.J. (1997). The structural and luminescence properties of porous silicon. Journal of Applied Physics. 82(3):909–965

    Article  CAS  Google Scholar 

  • Dai H.J., Hafner J.H., Rinzler A.G., Colbert D.T., Smalley R.E. (1996). Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147–150

    Article  CAS  Google Scholar 

  • Decher G. (1997). Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277(5330):1232–1237

    Article  CAS  Google Scholar 

  • Deheer W.A., Chatelain A., Ugarte D. (1995). A carbon nanotube field-emission electron source. Science 270(5239):1179–1180

    CAS  Google Scholar 

  • Dekker C. (1999). Carbon nanotubes as molecular quantum wires. Physics Today 52(5):22–28

    CAS  Google Scholar 

  • Dillon A.C., Jones K.M., Bekkedahl T.A., Kiang C.H., Bethune D.S., Heben M.J. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature 386 (6623):377–379

    Article  CAS  Google Scholar 

  • Dowling A. et al., 2004. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. The Royal Society and the Royal Academy of Engineering

  • Dresselhaus M.S., G. Dresselhaus & P.C. Eklund, 1996. Science of Fullerenes and Carbon Nanotubes. Academic Press

  • Duan X.F., Lieber C.M. (2000). General synthesis of compound semiconductor nanowires. Advanced Materials 12(4):298–302

    Article  CAS  Google Scholar 

  • Duan X.F., Huang Y., Cui Y., Wang J.F., Lieber C.M. (2001). Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69

    CAS  Google Scholar 

  • Dubertret B., Skourides P., Norris D.J., Noireaux V., Brivanlou A.H., Libchaber A. (2002). In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762

    Article  PubMed  CAS  Google Scholar 

  • Ebbesen T.W., Ajayan P.M. (1992). Large-scale synthesis of carbon nanotubes. Nature 358(6383):220–222

    Article  CAS  Google Scholar 

  • Eigler D.M., Schweizer E.M. (1990). Positioning single atoms with a scanning tunneling microscope. Nature 344(6266):524–526

    Article  CAS  Google Scholar 

  • Fan S.S., Chapline M.G., Franklin N.R., Tombler T.W., Cassell A.M., Dai H.J. (1999). Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401):512–514

    Article  PubMed  CAS  Google Scholar 

  • Fowler R.H., Nordheim L.W. (1928). Proc. Roy. Soc. London Ser. A 119:173

    CAS  Google Scholar 

  • Frank S., Poncharal P., Wang Z.L., de Heer W.A. (1998). Carbon nanotube quantum resistors. Science. 280(5370):1744–1746

    Article  PubMed  CAS  Google Scholar 

  • Freitas R.A., 1999. Nanomedicine, Vol. 1: Basic Capabilities. Landes Bioscience

  • Freitas R.A., 2003. Nanomedicine, Vol. 2: Basic Capabilities. Landes Bioscience

  • Frisch, M.J., G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle & J.A. Pople, 1998. Gaussian 98, Revision A.6. Gaussian, Inc., Pittsburgh PA

  • Fujishima A., Honda K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37

    Article  PubMed  CAS  Google Scholar 

  • Giannelis E.P. (1996). Polymer layered silicate nanocomposites. Advanced Materials 8(1):29

    Article  CAS  Google Scholar 

  • Goddard W.A., D.W. Brenner, S.E. Lyshevski & G.J. Iafrate 2002. Handbook of Nanoscience, Engineering, and Technology. CRC Press

  • Goldhaber-Gordon D., Shtrikman H., Mahalu D., Abusch-Magder D., Meirav U., Kastner M.A. (1998). Kondo effect in a single-electron transistor. Nature 391(6663):156–159

    Article  CAS  Google Scholar 

  • Grundmann M., Stier O., Bimberg D. (1995). Inas/Gaas Pyramidal Quantum Dots - Strain Distribution, Optical Phonons, and Electronic-Structure. Physical Review B 52(16):11969–11981

    Article  CAS  Google Scholar 

  • Gudiksen M.S., Lauhon L.J., Wang J., Smith D.C., Lieber C.M. (2002). Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872):617–620

    Article  PubMed  CAS  Google Scholar 

  • Hagfeldt A., Gratzel M. (1995). Light-Induced Redox Reactions In Nanocrystalline Systems. Chemical Reviews 95(1):49–68

    Article  CAS  Google Scholar 

  • Hamada N., Sawada S., Oshiyama A. (1992). New One-Dimensional Conductors - Graphitic Microtubules. Physical Review Letters. 68(10):1579–1581

    Article  PubMed  CAS  Google Scholar 

  • Han W.Q., S.S. Fan, Q.Q. Li, Y.D. Hu, 1997. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277(5330):1287–1289

    Article  CAS  Google Scholar 

  • Henglein A. (1989). Small-Particle Research - Physicochemical Properties Of Extremely Small Colloidal Metal And Semiconductor Particles. Chemical Reviews. 89(8):1861–1873

    Article  CAS  Google Scholar 

  • Hohenberg P., Kohn W. (1964). Inhomogeneous Electron Gas. Physical Review B 136(3b):B864–871

    Article  Google Scholar 

  • Hu J.T., Odom T.W., Lieber C.M. (1999). Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research 32(5):435–445

    Article  CAS  Google Scholar 

  • Huang M.H., Mao S., Feick H., Yan H.Q., Wu Y.Y., Kind H., Weber E., Russo R., Yang P.D. (2001). Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899

    Article  CAS  Google Scholar 

  • Huang M.H., Wu Y.Y., Feick H., Tran N., Weber E., Yang P.D. (2001). Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials 13(2):113–116

    Article  CAS  Google Scholar 

  • Huang Y., Duan X.F., Cui Y., Lauhon L.J., Kim K.H., Lieber C.M. (2001). Logic gates and computation from assembled nanowire building blocks. Science 294(5545):1313–1317

    Article  CAS  Google Scholar 

  • Iijima S. (1991). Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  • Iijima S., Ichihashi T. (1993). Single-Shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  CAS  Google Scholar 

  • Johnson P.B., Christy R.W. (1972). Optical-Constants of noble-metals. Physical Review B 6(12):4370–4379

    Article  CAS  Google Scholar 

  • Journet C., Maser W.K., Bernier P., Loiseau A., delaChapelle M.L., Lefrant S., Deniard P., Lee R., Fischer J.E. (1997). Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758

    Article  CAS  Google Scholar 

  • Judd B.R. (1962). Optical absorption intensities of rare-earth ions. Physical Review 127(3):750–761

    Article  CAS  Google Scholar 

  • Kataura H., Kumazawa Y., Maniwa Y., Umezu I., Suzuki S., Ohtsuka Y., Achiba Y. (1999). Optical properties of single-wall carbon nanotubes. Synthetic Metals 103(1–3):2555–2558

    Article  CAS  Google Scholar 

  • Kissinger H.E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry 29(11):1702–1706

    Article  CAS  Google Scholar 

  • Kleinman L., Bylander D.M. (1982). Efficacious form for model pseudopotentials. Physical Review Letters 48(20):1425–1428

    Article  CAS  Google Scholar 

  • Klug H.P., Alexander L.E. (1954). X-ray Diffraction Procedures. John Wiley & Sons, New York

    Google Scholar 

  • Klug H.P., Alexander L.E. (1974). X-ray Diffraction Procedures. John Wiley and Sons, Inc. New York

    Google Scholar 

  • Kohn W., Sham L.J. (1965). Self-Consistent equations including exchange and correlation effects. Physical Review 140(4a):1133–1138

    Article  Google Scholar 

  • Kojima Y., Usuki A., Kawasumi M., Okada A., Fukushima Y., Kurauchi T., Kamigaito O. (1993). Mechanical-Properties of nylon 6-clay hybrid. Journal of Materials Research 8(5):1185–1189

    CAS  Google Scholar 

  • Kong J., Franklin N.R., Zhou C.W., Chapline M.G., Peng S., Cho K.J., Dai H.J. (2000). Nanotube molecular wires as chemical sensors. Science 287(5453):622–625

    Article  PubMed  CAS  Google Scholar 

  • Kostoff R.N., Shlesinger M.F. (2005b). CAB-Citation-assisted background. Scientometrics 62(2):199–212

    Article  Google Scholar 

  • Kostoff R.N., J.A. Del Rio, E.O. García, A.M. Ramírez, J.A. Humenik, 2001. Citation mining: Integrating text mining and bibliometrics for research user profiling. JASIST 52:13. 1148–1156. 52:13. November

    Google Scholar 

  • Kostoff R.N., J.A. Stump, D. Johnson, J.S. Murday, C.G.Y. Lau & W.M. Tolles, 2005a. The structure and infrastructure of the global nanotechnology literature. J. Nanoparticle Res. This Issue

  • Kostoff R.N., J.S. Murday, C.G.Y. Lau & W.M. Tolles, 2005b. The seminal literature of nanotechnology research. DTIC Technical Report ADA435986 (http://www.dtic.mil/). Defense Technical Information Center. Fort Belvoir, VA

  • Kreibig U., Vollmer M. (1995) Optical Properties of Metal Clusters. Springer, Berlin

    Google Scholar 

  • Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. (1992). Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    Article  CAS  Google Scholar 

  • Kricka L.J., Fortina P. (2002). Nanotechnology and applications: An all-language literature survey including books and patents. Clinical Chemistry 48(4): 662–665

    PubMed  CAS  Google Scholar 

  • Kroto H.W., Heath J.R., Obrien S.C., Curl R.F., Smalley R.E. (1985). C-60 – Buckminsterfullerene. Nature. 318 (6042):162–163

    Article  CAS  Google Scholar 

  • Li W.Z., Xie S.S., Qian L.X., Chang B.H., Zou B.S., Zhou W.Y., Zhao R.A., Wang G. (1996). Large-scale synthesis of aligned carbon nanotubes. Science 274(5293):1701–1703

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  • Liu M.X. (1993). Progress In Documentation - The Complexities of Citation Practice – A Review of Citation Studies. Journal of Documentation. 49(4):370–408

    Google Scholar 

  • Liu J., Rinzler A.G., Dai H.J., Hafner J.H., Bradley R.K., Boul P.J., Lu A., Iverson T., Shelimov K., Huffman C.B., Rodriguez-Macias F., Shon Y.S., Lee T.R., Colbert D.T., Smalley R.E. (1998). Fullerene pipes. Science 280 (5367):1253–1256

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  • Loss D., DiVincenzo D.P. (1998). Quantum computation with quantum dots. Physical Review A. 57(1):120–126

    Article  CAS  Google Scholar 

  • Macroberts, M.H., Macroberts B.R. (1989). Problems of citation analysis - A critical-review. Journal of the American Society for Information Science. 40(5):342–349

    Article  Google Scholar 

  • MacRoberts M., MacRoberts B. (1996). Problems of citation analysis. Scientometrics 36(3):435–444

    Article  Google Scholar 

  • Martel R., Schmidt T., Shea H.R., Hertel T., Avouris P. (1998). Single- and multi-wall carbon nanotube field-effect transistors. Applied Physics Letters 73(17):2447–2449

    Article  CAS  Google Scholar 

  • Martin C.R. (1994). Nanomaterials - A membrane-based synthetic approach. Science. 266(5193):1961–1966

    CAS  Google Scholar 

  • Masuda H., Fukuda K. (1995). Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268(5216):1466–1468

    CAS  Google Scholar 

  • Maxwell-Garnet J.C., 1904. Colours in metal glasses and in metallic films. Phil. Trans. R. Soc. 203, 385

    Google Scholar 

  • Mie G. (1908). Beiträge zur optic trüber medien spieziell kolloidaler metallösungen. Ann. Phys., 25:377–445

    CAS  Google Scholar 

  • Mintmire J.W., Dunlap BI, White CT. (1992). Are fullerene tubules metallic. Physical Review Letters. 68 (5):631–634

    Article  PubMed  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 382 (6592):607–609

    Article  PubMed  CAS  Google Scholar 

  • Monkhorst HJ. and Pack JD. (1976). On special points for brillouin zone integrations. Phys. Rev. B 13: 5188

    Article  Google Scholar 

  • Morales A.M., Lieber CM. (1998). A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science. 279 (5348):208–211

    Article  PubMed  CAS  Google Scholar 

  • Moskovits M. (1985). Surface-enhanced spectroscopy. Reviews of Modern Physics. 57 (3):783–826

    Article  CAS  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG. (1993). Synthesis and characterization of nearly monodisperse cde (e=s, se, te) semiconductor nanocrystallites. Journal of the American Chemical Society. 115 (19):8706–8715

    Article  CAS  Google Scholar 

  • Nazeeruddin MK, Kay A., Rodicio I, Humphrybaker R, Muller E, Liska P, Vlachopoulos N, Gratzel M. (1993). Conversion of light to electricity by cis-x2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(ii) charge-transfer sensitizers (x = cl-, br-, i-, cn-, and scn-) on nanocrystalline tio2 electrodes. Journal of the American Chemical Society. 115 (14):6382–6390

    Article  CAS  Google Scholar 

  • Neel, L., 1949. Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites. Ann. Geophys. 5, 99–136

    Google Scholar 

  • Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE. (1999). Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters. 313 (1–2):91–97

    Article  CAS  Google Scholar 

  • Odom TW, Huang JL, Kim P, Lieber CM. (1998). Atomic structure and electronic properties of single-walled carbon nanotubes. Nature. 391 (6662):62–64

    Article  CAS  Google Scholar 

  • Ofelt GS. (1962). Intensities of crystal spectra of rare-earth ions. Journal of Chemical Physics. 37 (3):511

    Article  CAS  Google Scholar 

  • Oliver WC, Pharr GM. (1992). An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 7 (6):1564–1583

    CAS  Google Scholar 

  • Oregan B, Gratzel M. (1991). A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal tio2 films. Nature. 353 (6346):737–740

    Article  CAS  Google Scholar 

  • Pan Z.W., Dai Z.R., Wang Z.L., (2001). Nanobelts of semiconducting oxides. Science. 291 (5510):1947–1949

    PubMed  CAS  Google Scholar 

  • Parratt LG. (1954). Surface studies of solids by total reflection of x-rays. Physical Review. 95 (2):359–369

    Article  Google Scholar 

  • Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A., Alivisatos A.P., (2000). Shape control of CdSe nanocrystals. Nature. 404 (6773):59–61

    CAS  Google Scholar 

  • Perdew JP, Zunger A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B. 23 (10):5048–5079

    Article  CAS  Google Scholar 

  • Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA. (1999). “Dip-pen” nanolithography. Science. 283 (5402):661–663

    Article  PubMed  CAS  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos A.P., (2001). Colloidal nanocrystal shape and size control: The case of cobalt. Science. 291 (5511):2115–2117

    Article  PubMed  CAS  Google Scholar 

  • Rao A.M., Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS. (1997). Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science. 275 (5297):187–191

    Article  PubMed  CAS  Google Scholar 

  • Reed MA, Bate RT, Bradshaw K, Duncan WM, Frensley WR, Lee JW, Shih HD. (1986). Spatial quantization in gaas-algaas multiple quantum dots. Journal of Vacuum Science & Technology B. 4 (1):358–360

    Article  CAS  Google Scholar 

  • Ren Z.F., Huang Z.P., Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN. (1998). Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science. 282 (5391):1105–1107

    Article  PubMed  CAS  Google Scholar 

  • Richter H, Wang Z.P., Ley L. (1981). The one phonon Raman-spectrum in microcrystalline silicon. Solid State Communications. 39 (5): 625–629

    Article  CAS  Google Scholar 

  • Rietveld HM. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography. 2:65–71. Part 2

    Article  CAS  Google Scholar 

  • Rinzler A.G., Hafner JH, Nikolaev P, Lou L, Kim SG, Tomanek D, Nordlander P, Colbert DT, Smalley RE. (1995). Unraveling nanotubes - field-emission from an atomic wire. Science. 269 (5230):1550–1553

    CAS  Google Scholar 

  • Rinzler A.G., Liu J, Dai H, Nikolaev P, Huffman CB, Rodriguez-Macias FJ, Boul PJ, Lu A.H., Heymann D, Colbert DT, Lee RS, Fischer JE, Rao A.M., Eklund PC, Smalley RE. (1998). Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Applied Physics A-Materials Science & Processing. 67 (1):29–37

    CAS  Google Scholar 

  • Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. (1992). Electronic-structure of chiral graphene tubules. Applied Physics Letters. 60 (18):2204–2206

    Article  CAS  Google Scholar 

  • Saito, R. MS Dresselhaus, G Dresselhaus. (1998). Physical Properties of Carbon Nanotubes. Imperial College Press, London

    Google Scholar 

  • Santori C, Pelton M, Solomon G, Dale Y, Yamamoto E. (2001). Triggered single photons from a quantum dot. Physical Review Letters. 86 (8):1502–1505

    Article  PubMed  CAS  Google Scholar 

  • Sauerbrey G. (1959). Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung. Zeitschrift Fur Physik. 155 (2):206–222

    Article  CAS  Google Scholar 

  • Shannon RD. (1976). Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 32 (Sep1):751–767

    Article  Google Scholar 

  • Sherwin C.W. & R. S. Isenson, 1967. Project Hindsight. A Defense Department study of the utility of research. Science. 23:156(3782), 1571–1577

    Google Scholar 

  • Simon J. (2005). Micro- and nanotechnologies: Dullish electrons and smart molecules. Comptes Rendus Chimie 8 (5): 893–902

    Article  CAS  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. (1985). Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984). Pure and Applied Chemistry. 57 (4):603–619

    CAS  Google Scholar 

  • Smith BW, Monthioux M, Luzzi DE. (1998). Encapsulated C-60 in carbon nanotubes. Nature. 396 (6709):323–324

    Article  CAS  Google Scholar 

  • Spindt CA, Brodie I, Humphrey L, Westerberg ER. (1976). Physical-properties of thin-film field-emission cathodes with molybdenum cones. Journal of Applied Physics. 47 (12):5248–5263

    Article  CAS  Google Scholar 

  • Stober, W., Fink, A., Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. J. Coll. Interf. Sci., 26, 62–69

    Article  Google Scholar 

  • Stoner EC, Wohlfarth EP. (1948). A mechanism of magnetic hysteresis in heterogenous alloys. Philosophical Transactions of the Royal Society of London. A240, 599–642, 1948

    Google Scholar 

  • Stoney G. (1909). The tension of thin metallic films deposited by electrolysis. Proc.R.Soc.A 82: 172–173

    CAS  Google Scholar 

  • Sun SH, Murray CB, Weller D, Folks L, Moser A. (2000). Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 287 (5460):1989–1992

    Article  PubMed  CAS  Google Scholar 

  • Sze, SM. 1981. Physics of Semiconductor Devices, 2nd edn. John Wiley & Sons

  • Tang CW, Vanslyke SA. (1987). Organic electroluminescent diodes. Applied Physics Letters. 51 (12):913–915

    Article  CAS  Google Scholar 

  • Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C. (1997). Individual single-wall carbon nanotubes as quantum wires. Nature. 386 (6624):474–477

    Article  CAS  Google Scholar 

  • Tans SJ, Verschueren A.R.M., Dekker C. (1998). Room-temperature transistor based on a single carbon nanotube. Nature. 393 (6680):49–52

    Article  CAS  Google Scholar 

  • Tarucha S, Austing DG, Honda T, vanderHage RJ, Kouwenhoven LP. (1996). Shell filling and spin effects in a few electron quantum dot. Physical Review Letters. 77 (17):3613–3616

    Article  PubMed  CAS  Google Scholar 

  • Templeton A.C., Wuelfing MP, Murray RW. (2000). Monolayer protected cluster molecules. Accounts of Chemical Research. 33 (1):27–36

    Article  CAS  Google Scholar 

  • Tenne R, Margulis L, Genut M, Hodes G. (1992). Polyhedral and cylindrical structures of tungsten disulfide. Nature. 360 (6403):444–446

    Article  CAS  Google Scholar 

  • Thess A., Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler A.G., Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. (1996). Crystalline ropes of metallic carbon nanotubes. Science. 273 (5274):483–487

    PubMed  CAS  Google Scholar 

  • Treacy MMJ, Ebbesen TW, Gibson JM. (1996). Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 381 (6584):678–680

    Article  CAS  Google Scholar 

  • Tuinstra F, Koenig Jl. (1970). Raman spectrum of graphite. Journal of Chemical Physics. 53 (3):1126

    Article  CAS  Google Scholar 

  • Turkevich J., P.C. Stevenson & J.A. Hillier, 1951. Study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75

    Google Scholar 

  • Ulman A. 1996. Formation and structure of self-assembled monolayers. Chem. Rev. 96(4):1533–1554

    Article  PubMed  CAS  Google Scholar 

  • Ulman, A. (1991). Ultrathin Organic Films, 1st edn, Academic Press, Inc.: San Diego

    Google Scholar 

  • Usuki A., Kojima Y, Kawasumi M, Okada A., Fukushima Y, Kurauchi T, Kamigaito O. (1993). Synthesis of nylon 6-clay hybrid. Journal of Materials Research. 8 (5):1179–1184

    CAS  Google Scholar 

  • Vanderbilt D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B. 41 (11):7892–7895

    Article  Google Scholar 

  • Wagner RS, Ellis WC. (1964). Vapor-liquid-solid mechanism of single crystal growth (new method growth catalysis from impurity whisker epitaxial + large crystals Si E). Applied Physics Letters. 4 (5):89–90

    Article  CAS  Google Scholar 

  • Wildoer JWG, Venema LC, Rinzler A.G., Smalley RE, Dekker C. (1998). Electronic structure of atomically resolved carbon nanotubes. Nature. 391 (6662):59–62

    Article  CAS  Google Scholar 

  • Williamson GK, Hall WH. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metall. Vol 1, 22–31

    Article  CAS  Google Scholar 

  • Wong EW, Sheehan PE, Lieber CM. (1997). Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science. 277 (5334):1971–1975

    Article  CAS  Google Scholar 

  • Wooten, F. (1972). Optical properties of solids, Academic Press, New York

    Google Scholar 

  • Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP. (2003). Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature. Biotechnology. 21 (1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ. (2003). One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials. 15 (5):353–389

    Article  CAS  Google Scholar 

  • Xie QH, Madhukar A., Chen P, Kobayashi NP. (1995). Vertically self-organized inas quantum box islands on GaAs(100). Physical Review Letters. 75 (13):2542–2545

    Article  PubMed  CAS  Google Scholar 

  • Yablonovitch E. (1987). Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters. 58 (20):2059–2062

    Article  PubMed  CAS  Google Scholar 

  • Yao Z., Postma HWC, Balents L, Dekker C. (1999). Carbon nanotube intramolecular junctions. Nature. 402 (6759):273–276

    Article  CAS  Google Scholar 

  • Yoshizawa Y., S. Oguma & K. Yamauchi, 1988. New fe-based soft magnetic-alloys composed of ultrafine grain-structure. J. Appl. Phys. 64(10):6044–6046 Part 2

    Google Scholar 

  • Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 279 (5350):548–552

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  • Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD. (1998). Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society. 120 (24):6024–6036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald N. Kostoff.

Additional information

The views in this paper are solely those of the authors, and do not represent the views of the Department of the Navy or any of its components, or the Institute for Defense Analyses

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostoff, R.N., Murday, J.S., Lau, C.G. et al. The seminal literature of nanotechnology research. J Nanopart Res 8, 193–213 (2006). https://doi.org/10.1007/s11051-005-9034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9034-9

Keywords

Navigation