Skip to main content
Log in

Persistence Length and Nanomechanics of Random Bundles of Nanotubes

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A connection between the stiffness of carbon nanotubes (CNT) and their mesoscopic physical behaviour is presented. Persistence lengths of CNT and bundles are calculated and shown to be in macroscopic range (0.03–1 mm for an individual tube), exceeding by many orders of magnitude the typical diameters (around 1–3 nm). Consequently, thermal fluctuations can be neglected when scaling analysis is applied to randomly packed (as produced) CNT network, leading to an approximate equation of state for such material. Beyond the linear elasticity, the outmost CNT are shown to gradually split from the bent bundles; this permits access of solvent or reacting species to the CNT walls, an important mechanism promoting solubilization and chemical functionalization of nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astrom J.A., Krasheninnikov A.V. and Nordlund K. (2004). Carbon nanotube mats and fibers with irradiation-improved mechanical characteristics: A theoretical model. Phys. Rev. Lett. 93: 215503

    Article  CAS  Google Scholar 

  • de-Gennes P.G. (1979). Scaling Concepts in Polymer Physics. Cornell Univ Press, Ithaca

    Google Scholar 

  • Doi M. and Edwards S.F. (1986). The Theory of Polymer Dynamics. Clarendon Press, Oxford

    Google Scholar 

  • Dyke C.A. and Tour J.M. (2003). Solvent-free functionalization of carbon nanotubes. JACS 125: 1156–1157

    Article  CAS  Google Scholar 

  • Girifalco L.A., Hodak M. and Lee R.S. (2000). Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62: 13104–13110

    Article  CAS  Google Scholar 

  • Harris P.J.F. (1999). Carbon Nanotubes and Related Structures. Cambridge University, Cambridge

    Google Scholar 

  • Hernandez E., Goze C., Bernier P. and Rubio A. (1998). Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80: 4502–4505

    Article  CAS  Google Scholar 

  • Kim W., Choi H.C., Shim M., Li Y.M., Wang D.W. and Dai H.J. (2002). Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes. Nano Lett. 2: 703–708

    Article  CAS  Google Scholar 

  • Kis A. and Csanyi G. (2004). Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nature Mater. 3: 153–157

    Article  CAS  Google Scholar 

  • Kudin K.N., Scuseria G.E. and Yakobson B.I. (2001). C2F, BN and C nano-shell elasticity by ab initio computations. Phys. Rev. B 64: 235–406

    Article  Google Scholar 

  • Landau L.D. and Lifshitz E.M. (1986). Elasticity Theory. Pergamon, Oxford

    Google Scholar 

  • Li Z., Dharap P., Nagarajaiah S., Nordgren R.P. and Yakobson B.I. (2004). Nonlinear analysis of SWCNT over a bundle of nanotubes. Intern. J. solids and structures 41: 6925–6936

    Article  Google Scholar 

  • Liu J. and Rinzler A.G. (1998). Fullerene pipes. Science 280: 1253–1256

    Article  CAS  Google Scholar 

  • Liu J.Z., Zheng Q.S., Wang L.F. and Jiang Q. (2005). Mechanical properties of single-walled carbon nanotube bundles as bulk materials. J. Mech. Phys. Sol. 53: 123–142

    Article  CAS  Google Scholar 

  • Lu J.P. (1997). Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79: 1297–1300

    Article  CAS  Google Scholar 

  • Martel R., Shea H.R. and Avouris P. (1999). Ring Formation in Single-Wall Carbon Nanotubes. J. Phys. Chem. 103: 7551

    CAS  Google Scholar 

  • O’Connell M.J. and Bachilo S.M. (2002). Band gap fluorescence from individual single-walled carbon nanotubes. Science 297: 593–596

    Article  CAS  Google Scholar 

  • O’Connell M.J. and Boul P. (2001). Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342: 265–271

    Article  CAS  Google Scholar 

  • Pikhitsa P.V. (2004). Regular network of contacting cylinders with Implications for materials with negative Poisson ratios. Phys. Rev. Lett. 93: 015505

    Article  Google Scholar 

  • Salvetat J.-P. and Briggs G.A. (1999a). Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82: 944–947

    Article  CAS  Google Scholar 

  • Salvetat J.-P. and Kulik A.J. (1999b). Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 11: 161–165

    Article  CAS  Google Scholar 

  • Sanchez-Portal D., Artacho E., Soler J.M., Rubio A. and Ordejon P. (1999). Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59: 12678–12688

    Article  CAS  Google Scholar 

  • Sano M., Kamino A., Okamura J. and Shinkai S. (2001). Ring closure of carbon nanotubes. Science 293: 1299–1301

    Article  CAS  Google Scholar 

  • Suslick K.S. and Price G. (1999). Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29: 295–326

    Article  CAS  Google Scholar 

  • Tersoff J. and Ruoff R.S. (1994). Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 73: 676–679

    Article  CAS  Google Scholar 

  • Yakobson B.I. (1998). Mechanical relaxation and ‘Intramolecular Plasticity’ in carbon nanotubes. Appl. Phys. Lett. 72: 918–920

    Article  CAS  Google Scholar 

  • Yakobson, B.I., 2003. In: Goddard W.A. ed. Nanomechanics. Handbook of Nanoscience, Engineering, and Technology., CRC, New York, pp. 17.1–18

  • Yakobson, B.I. & P. Avouris. 2001. Mechanical Properties of Carbon Nanotubes. Topics Appl. Phys. pp. 287–327

  • Yakobson B.I., Brabec C.J. and Bernholc J. (1996). Nanomechanics of carbon tubes: Instabilities beyond the linear response. Phys. Rev. Lett. 76: 2511–2514

    Article  CAS  Google Scholar 

  • Yang W., Li Z.-M., Shi W., Xie B.-H. and Yang M.-B. (2004). Review on auxetic materials. J. Mater. Sci. 39: 3269–3279

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris I. Yakobson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakobson, B.I., Couchman, L.S. Persistence Length and Nanomechanics of Random Bundles of Nanotubes. J Nanopart Res 8, 105–110 (2006). https://doi.org/10.1007/s11051-005-8335-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-8335-3

Key words

Navigation