Skip to main content
Log in

Optical Properties of Zinc Oxide Nano-particles Embedded in Dielectric Medium for UV region: Numerical Simulation

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Zinc oxide nano-particles have been used by cosmetic industry for many years because they are extensively used as agents to attenuate (absorb and/or scatter) the ultraviolet radiation. In the most UV-attenuating agent is formulated in which the metal oxide nano-particles are incorporated into liquid media or polymer media are manufactured, such as sunscreens and skin care cosmetics. In this paper we study the wavelength dependence on the particle size (r eff = 10–100 nm) by solving the scattering problem of hexagonal ZnO particle for different shapes (plate, equal ratio, column) using the discrete dipole approximation method to find the absorption, scattering, and extinction efficiencies for the UV region (30–400 nm). A new modified hexagonal shape is introduced to determine the scattering problem and it is assumed in this study that the wavelength is comparable to the particle size. From these results, we conclude that the optimum particle radius to block the UV radiation is between r eff = 40–80 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borns M. and Wolf E. (1980). Principle of Optics.. Pergamon Press, Oxford

    Google Scholar 

  • Conway J.H. and Sloane N.J.A. (1999). Sphere Packings, Lattices and Group. Springer-Verlag, New York

    Google Scholar 

  • Dakhel A.A. (2001). Optical constants of evaporated gadolinium oxide. J. Opt. A: Pure Appl. Opt. 3: 452–454

    Article  CAS  Google Scholar 

  • Dakhel A.A. (2003). Structure, refractive index dispersion and optical absorption properties of evaporated Zn–Eu oxide films. Mater. Chem. Phys. 81: 56–62

    Article  CAS  Google Scholar 

  • Hopkins T. (1995). The Parallel Iterative Methods (PIM) package for the solution of systems of linear equations on parallel computers. Appl. Num. Maths. 19: 33–50

    Article  Google Scholar 

  • Draine B.T. (1998). The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 333: 848–872

    Article  Google Scholar 

  • Dranie B.T. (2000). The discrete-dipole approximation for light scattering by irregular targets. In: Mishchenko, M.I., Hovenier, J.W. and Travis, L.D. (eds) Light scattering by Nonspherical Particles: Theroy, Measurements, and Geophysical Applications, pp 131–145. Academic Press, N.Y.

    Google Scholar 

  • Draine B.T., 2004a. Princeton University Observatory, Princeton NJ, 08544–1001 and Flatau P.J., University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California 92093–0221, USA. Program DDSCAT6.1

  • Draine B.T. & P.J. Flatau, 2004b. User Guide for the Discrete Dipole Approximation Code DDSCAT.6.1. http://arxiv.org/abs/astro-ph/xxx

  • Draine B.T. and Flatau P.J. (1994). The discrete dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11: 1491–1499

    Article  Google Scholar 

  • Draine B.T. and Goodman J. (1993). Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation. Astrophys. J. 405: 685–697

    Article  Google Scholar 

  • Dulub O., Boatner L.A. and Diebold U. (2002). STM study of the geometric and electronic structure of ZnO(0001)-Zn, (0001′)-O, (101′0), and (112′0) surfaces. Surf. Sci. 519: 201–217

    Article  CAS  Google Scholar 

  • Fairhurst D. & M.A. Mitchnick, 1997. In: Lowe N.J., Shaath N.A. and Pathak M.A. eds. Sunscreens; Development, Evaluation, and Regulatory Aspects. 2nd edn. Marcel Dekker, New York, p. 313

  • Flatau P.J. (1997). Improvements in the discrete-dipole approximation method of computing scattering and absorption. Opt. Lett. 22: 1205–1207

    Article  CAS  Google Scholar 

  • Forouhi A.R. & I. Bloomer, 1991. In: E.D. Palik, ed. Handbook of Optical Constants of Solids II, Calculation of optical constants n and k in the interband region. Academic Press, New York, Chapter 7, pp. 151–175

  • Heavens O.S. (1991). Optical Properties of Thin Film. Dover, New York

    Google Scholar 

  • Jackson J.D. (1975). Classical Electrodynamics. Wiley, New York, 152

    Google Scholar 

  • Kim S.Y. (1996). Simultaneous determination of refractive index, extinction coefficient and void distribution of titanium dioxide thin film by optical methods. Appl. Opt. 35: 6703–6707

    CAS  Google Scholar 

  • Kozasa T., Blum J. and Mukai T. (1992). Optical properties of dust aggregates: I. Wavelength dependence. Astron. Astrophys. 263: 423–432

    CAS  Google Scholar 

  • Markel V.A., Shalaev V.A., Stechel E.B., Kim W. and Armstrong R. (1996). Small-particle composites I. Linear optical properties. Phys. Rev. B 53: 2425–2436

    Article  CAS  Google Scholar 

  • Meyer B. and Marx D. (2003). Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B67: 035403

    Google Scholar 

  • Peterson A.F., S.L. Ray, C.H. Chan, and R. Mittra, 1991. In: Sarkar T.K., ed. Application of Conjugate Gradient Method of Electromagnetics and Signal Analysis, Numerical implementation of the conjugate gradient method and the CG-FFT for electromagnetic scattering. Elsevier, New York, Ch. 5

  • Petravic M. and Kuo-Petravic G. (1979). An ILUCG algorithm which minimizes in the euclidean norm. J. Computational Phys. 32: 263–269

    Article  Google Scholar 

  • Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T. (1986). Numerical Recipes. Cambridge University Press, Cambridge

    Google Scholar 

  • Purcell E.M. and Pennypacker C.R. (1973). Scattering and absorption of light by nonspherical dielectric grains. Ap. J. 186: 705–714

    Article  Google Scholar 

  • Segelstein D. (1981). The Complex Refractive Index of Water. University of Missouri, Kansas city, USA

    Google Scholar 

  • Shore R.E. (1990). Overview of radiation-induced skin cancer in humans. Int J. Radi. Biol. 57: 809–827

    Article  CAS  Google Scholar 

  • Swanepoel R. (1983). J. Phys. D: Appl. Phys. 10: 1214

    Google Scholar 

  • Hulst H.C. (1957). Light scattering by small particles. Wiley, New York

    Google Scholar 

  • (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13: 631–644

    Article  Google Scholar 

  • Wood D.M. and Ashcroft N.W. (1982). Quantum size effect in the optical properties of small metallic particles. Phys. Rev. B 25: 6255–6274

    Article  CAS  Google Scholar 

  • Xing Z. and Hanner M.S. (1997). Light scattering by aggregate particles. Astron. Astrophys. 324: 805–820

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Al-Hilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Hilli, S.M., Willander, M. Optical Properties of Zinc Oxide Nano-particles Embedded in Dielectric Medium for UV region: Numerical Simulation. J Nanopart Res 8, 79–97 (2006). https://doi.org/10.1007/s11051-005-8024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-8024-2

Keywords

Navigation