Journal of Nanoparticle Research

, Volume 7, Issue 4–5, pp 555–567 | Cite as

Uptake and Sequestration of Naphthalene and 1,2-Dichlorobenzene by C60

Article

Abstract

The interactions of common environmental contaminants with C60 have been studied to evaluate the environmental impact of carbon nanomaterials. The adsorption and desorption interaction of the hydrophobic contaminants naphthalene and 1,2-dichlorobenzene with C60 was characterized. Processes that cause the wetting and disaggregating of C60 particles also affect the extent of organic contaminant sorption to C60 aggregates by orders of magnitude. C60 dissolved in organic solvents such as toluene can form stable nanoscale aggregates upon vigorous mixing in water. These nanoscale C60 particles form stable suspensions in water and are referred to as ‘nano-C60’. Desorption of contaminants from stable suspensions of nano-C60 exhibits hysteresis. The experimentally observed adsorption/desorption hysteresis is described by a two-compartment desorption model: first, adsorption to the external surfaces that are in contact with water, and second, adsorption to the internal surfaces within the aggregates.

Keywords

carbon nanomaterials C60 nano-C60 environmental impact PAH desorption hysteresis colloids water quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accardi-Dey, A., Gschwend, P.M. 2002Assessing the combined roles of natural organic matter and black carbon as sorbents in sedimentsEnviron. Sci. Technol.362129CrossRefPubMedGoogle Scholar
  2. Adamson, A.W., Gast, A.P. 1997Physical Chemistry of SurfacesJohn Wiley & Sons IncNew York, NY, USAGoogle Scholar
  3. Alargova, R.G., Deguchi, S., Tsujii, K. 2001Stable colloidal dispersions of fullerenes in polar organic solventsJ. Am. Chem. Soc.1231046010467CrossRefPubMedGoogle Scholar
  4. Allen-King, R.M., Grathwohl, P., Ball, W.P. 2002New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocksAdv.Water Resour.259851016CrossRefGoogle Scholar
  5. Andersson, T., Nilsson, K., Sundahl, M., Westman, G., Wennerstrom, O. 1992C60 embedded in γ cyclodextrin: A water-soluble fullereneJ. Chem. Soc., Chem. Commun.8604607Google Scholar
  6. Andrievsky, G.V., Klochkov, V.K., Bordyuh, A.B., Dovbeshko, G.I. 2002Comparative anylysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV–Vis spectroscopyChem. Phys. Lett.364817CrossRefGoogle Scholar
  7. Andrievsky, G.V., Klochkov, V.K., Karyakina, E.L., Mchedlov-Petrossyan, N.O. 1999Studies of aqueous colloidal solutions of fullerene by electron microscopyChem. Phys. Lett.300392396CrossRefGoogle Scholar
  8. Andrievsky, G.V., M.V. Kosevich, O.M. Vovk, V. S. Shelkovsky & L.A. Vashchenko, 1995. On the production of an aqueous colloidal solution of fullerenes. J. Chem. Soc., Chem. Commun. 1281–1282Google Scholar
  9. Ballesteros, E., Gallego, M., Valcarcel, M. 2000Analytical potential of fullerene as adsorbent for organic and organometallic compounds from aqueous solutionsJ. Chromatogr. A869101110CrossRefPubMedGoogle Scholar
  10. Beeby, A., J. Eastoe & R.K. Heenan, 1994. Solubilisation of C60 in aqueous micellar solution. J. Chem. Soc., Chem. Commun. 173–175Google Scholar
  11. Bensasson, R.V., Bienvenue, E., Dellinger, M., Leach, S., Seta, P. 1994C60 in model biological systems. A Visible-UV absorption study of solvent-dependent parameters and solute aggregationJ. Phys. Chem.9834923500CrossRefGoogle Scholar
  12. Borm, P.J.A. 2002Particle toxicology: From coal mining to nanotechnologyInhalation Toxicol.14311324Google Scholar
  13. Braida, W.J., Pignatello, J.J., Lu, Y., Ravikovitch, P.I., Neimark, A.V., Xing, B. 2003Sorption Hysteresis of Benzene in Charcoal ParticlesEnviron. Sci. Technol.37409 417CrossRefPubMedGoogle Scholar
  14. Brettreich, M., Hirsch, A. 1998A highly water-soluble dendro[60]fullereneTetrahedron Lett.3927312734CrossRefGoogle Scholar
  15. Bucheli, T.D., Gustafsson, O. 2000Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observationsEnviron. Sci. Technol.3451445151CrossRefGoogle Scholar
  16. Carroll, K.M., Harkness, M.R., Bracco, A.A., Balcarcel, R.R. 1994Application of a permeant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson River sedimentsEnviron. Sci. Technol.28253258CrossRefGoogle Scholar
  17. Chen, W., Kan, A.T., Fu, G., Vignona, L.C., Tomson, M.B. 1999Adsorption-desorption behaviors of hydrophobic organic compounds in sediments of Lake Charles, Louisiana, USAEnviron. Toxicol. Chem.1816101616CrossRefGoogle Scholar
  18. Chen, W., Kan, A.T., Newell, C.J., Moore, E., Tomson, M.B. 2002More realistic soil cleanup standards with dual-equilibrium desorptionGround Water40153164PubMedGoogle Scholar
  19. Cheng, X., Kan, A.T., Tomson, M.B. 2004Naphthalene adsorption and desorption from aqueous C60 fullereneJ.␣Chem. Eng. Data49675683CrossRefGoogle Scholar
  20. Chiou, C.T., Kile, D.E. 1998Deviation from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrationsEnviron. Sci. Technol.32338343CrossRefGoogle Scholar
  21. Chiou, C.T., Peters, L.J., Freed, V.H. 1979A physical concept of soil–water equilibria for nonionic organic compoundsScience206831832Google Scholar
  22. Chun, Y., Sheng, G., Chiou, C.T., Xing, B. 2004Composition and sorptive properties of crop residue-derived charsEnviron. Sci. Technol.3846494655CrossRefPubMedGoogle Scholar
  23. Colvin, V.L. 2003The potential environmental impact of engineered nanomaterialsNat. Biotechnol.2111661170CrossRefPubMedGoogle Scholar
  24. Cornelissen, G., Gustafsson, O. 2005Importance of unburned coal carbon, black carbon, and amorphous organic carbon to phenanthrene sorption in sedimentsEnviron. Sci. Technol.39764769CrossRefPubMedGoogle Scholar
  25. Cornelissen, G., Van Noort, P.C.M., Parsons, J.R., Govers, H.A.J. 1997Temperature dependence of slow adsorption and desorption kinetics of organic comounds in sedimentsEnviron. Sci. Technol.31454460CrossRefGoogle Scholar
  26. Dagani, R. 2003Nanomaterials: Safe or unsafe? Chem. Eng. News 81, 30Google Scholar
  27. Deguchi, S., Alargova, R.G., Tsujii, K. 2001Stable Dispersions of Fullerenes, C60 and C70, in water. Preparation and characterizationLangmuir1760136017CrossRefGoogle Scholar
  28. Di Toro, D.M., Horzempa, L.M. 1982Reversible and resistant components of PCB adsorption-desorption: IsothermsEnviron. Sci. Technol.16594602CrossRefGoogle Scholar
  29. Fortner, J.D., Falkner, J.C., Hotze, E.M., Lyon, D.Y., Sayes, C.M., Ausman, K.D., Colvin, V.L., Hughes, J.B. 2005C60 Aggregates in Water: Formation Dynamics and Further Characterization229th ACS National MeetingSan Diego, CA, United StatesGoogle Scholar
  30. Fu, G., Kan, A.T., Tomson, M.B. 1994Adsorption and desorption hysteresis of PAHs in surface sedimentEnviron. Toxicol. Chem.1315591567Google Scholar
  31. Ghosh, U., Zimmerman, J.T., Luthy, R.G. 2003PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailabilityEnviron. Sci. Technol.3722092217CrossRefPubMedGoogle Scholar
  32. Goldberg, E.D. 1985Black Carbon in the EnvironmentJohn Wiley & Sons, IncNew York, USAGoogle Scholar
  33. Gustafsson, O., Haghseta, F., Chan, C., Macfarlane, J., Gschwend, P.M. 1997Quantification of the Dilute Sedimentary Soot Phase: Implications for PAH Speciation and BioavailabilityEnviron. Sci. Technol.31203209CrossRefGoogle Scholar
  34. Heymann, D., Bachilo, S.M., Weisman, R.B., Cataldo, F., Fokkens, R.H., Nibbering, N.M.M., Vis, R.D., Chibante, L.P.F. 2000C60O3, a fullerene ozonide: Synthesis and dissociation␣to C60O and O2J. Am. Chem. Soc.12211473 11479CrossRefGoogle Scholar
  35. Huang, W., Weber, W.J.J. 1997A distributed reactivity model for sorption by soils and sediments: 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domainsEnviron. Sci. Technol.3125622569CrossRefGoogle Scholar
  36. Huang, W., Yu, H., Weber, W.J.J. 1998Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments. 1. A comparative anylysis of␣experimental protocolsJ. Contam. Hydrol.31129148CrossRefGoogle Scholar
  37. James, G., Sabatini, D.A., Chiou, C.T., Rutherford, D., Scott, A.C., Karapanagioti, H.K. 2005Evaluating phenanthrene sorption on various wood charsWater Resour.39549558CrossRefGoogle Scholar
  38. Jenekhe, S.A., Chen, X.L. 1998Self-assembled aggregates of␣rod-coil block copolymers and their solubilization and encapsulation of fullerenesScience27919031907CrossRefPubMedGoogle Scholar
  39. Kan, A.T., Chen, W., Tomson, M.B. 1999Desorptino kinetics of neutral hydrophobic organic compounds from field-coontaminated sedimentEnviron. Pollut.1088189CrossRefGoogle Scholar
  40. Kan, A.T., Chen, W., Tomson, M.B. 2000Desorption kinetics of neutral hydrophobic organic compounds from field-contaminated sedimentEnviron. Pollut.1088189CrossRefPubMedGoogle Scholar
  41. Kan, A.T., Fu, G., Hunter, M., Chen, W., Ward, C.H., Tomson, M.B. 1998Irreversible adsorption of neutral organic hydrocarbons-experimental observations and model predictionsEnviron. Sci. Technol.32892902CrossRefGoogle Scholar
  42. Kan, A.T., Fu, G., Tomson, M.B. 1994Adsorption/desorption hysteresis in organic pollutant and soil/sediment interactionEnviron. Sci. Technol.28859867CrossRefGoogle Scholar
  43. Karickhoff, S.W., Brown, D.S., Scott, T.A. 1979Sorption of hydrophobic pollutants on natural sedimentsWater Resour.13241248CrossRefGoogle Scholar
  44. Karickhoff, S.W., Morris, K.R. 1985Sorption dynamics of hydrophobic pollutants in sediment suspensionsEnviron. Toxicol. Chem.4469479Google Scholar
  45. Kleineidam, S., Schuth, C., Grathwohl, P. 2002Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutantsEnviron. Sci. Technol.3646894697CrossRefPubMedGoogle Scholar
  46. Kratschmer, W., K. Fostiropoulos, , Huffman, D.R. 1990The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: Evidence for the presence of the C60 moleculeChem. Phys. Lett.170167170CrossRefGoogle Scholar
  47. Lai, D.T., Neumann, M.A., Matsumoto, M., Sunamoto, J. 2000Complexation of C60 Fullerene with Cholesteryl Group-Bearing Pullulan in Aqueous MediumChem. Lett.16465CrossRefGoogle Scholar
  48. Lecoanet, H.F., Wiesner, M.R. 2004Velocity effects on fullerene and oxide nanoparticle deposition in porous mediaEnviron. Sci. Technol.3843774382CrossRefPubMedGoogle Scholar
  49. Lu, Y., Pignatello, J.J. 2004History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matterEnviron. Sci. Technol.3858535862CrossRefPubMedGoogle Scholar
  50. McGroddy, S.E., Farrington, J.W. 1995Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston Harbor, MassachusettsEnviron. Sci. Technol.2915421550CrossRefGoogle Scholar
  51. McGroddy, S.E., Farrington, J.W., Gschwend, P.M. 1996Comparison of the in situ and desorption of sediment–water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenylsEnviron. Sci. Technol.30172177CrossRefGoogle Scholar
  52. Mchedlov-Petrossyan, N.O., Klochkov, V.K., Andrievsky, G.V. 1997Colloidal dispersions of fullerene C60 in water: Some properties and regularities of coagulation by electrolytesJ. Chem. Soc., Faraday Trans.9343434346Google Scholar
  53. Mchedlov-Petrossyan, N.O., Klochkov, V.K., Andrievsky, G.V., Ishchenko, A.A. 2001Interaction between colloidal particles of C60 hydrosol and cationic dyesChem. Phys. Lett.341237244CrossRefGoogle Scholar
  54. Nguyen, T.H., Sabbah, I., Ball, W.P. 2004Sorption nonlinearity for organic contaminants with diesel soot: Method develpment and isotherm interpretationEnviron. Sci. Technol.3835953603CrossRefPubMedGoogle Scholar
  55. Pignatello, J.J. 1989Slowly reversible sorption of aliphatic halocarbons in soils. I. Formation of residual fractionsEnviron. Toxicol. Chem.911071115Google Scholar
  56. Pignatello, J.J., Huang, L.Q. 1991Sorptive reversibility of atrazine and metolachlor residues in field soil samplesJ. Environ. Qual.20222228Google Scholar
  57. Pignatello, J.J., Xing, B. 1996Mechanisms of slow sorption of organic chemicals to natural particlesEnviron. Sci. Technol.30111CrossRefGoogle Scholar
  58. Rathousky, J., Starek, J., Zukal, A., Kratschmer, W. 1993Uptake of cyclopentane vapours in a fullerite powderFullerene Sci. Technol.1575582Google Scholar
  59. Rathousky, J., Zukal, A. 2000Adsorption of krypton and cyclopentane on C60: An experimental studyFullerene Sci. Technol.8337350Google Scholar
  60. Ruoff, R.S., Tse, D.S., Malhotra, R., Lorents, D.C. 1993Solubility of fullerene (C60) in a variety of solventsJ. Phys. Chem.9733793383CrossRefGoogle Scholar
  61. Sano, M., Oishi, K., Ishi-i, T., Shinkai, S. 2000Vesicle formation and its fractal distribution by bola-amphiphilic [60]fullereneLangmuir1637733776CrossRefGoogle Scholar
  62. Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.D., Tao, Y.J., Sitharaman, B., Wilson, L.J., Hughes, J.B., West, J.L., Colvin, V.L. 2004The differential cytotoxicity of water-soluble fullerenesNano Lett.418811887CrossRefGoogle Scholar
  63. Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M. 2003Environmental Organic ChemistryJohn Wiley & Sons, IncHoboken, New JerseyGoogle Scholar
  64. Scrivens, W.A., Tour, J.M., Creek, K.E., Pirisi, L. 1994Synthesis of 14C-labeled C60, its suspension in water, and its uptake by human keratinocytesJ. Am. Chem. Soc.11645174518CrossRefGoogle Scholar
  65. Setton, R., Bernier, P., Lefrant, S. 2002Carbon Molecules and MaterialsTaylor and FrancisNew YorkGoogle Scholar
  66. Steinberg, S.M., Pignatello, J.J., Sawhney, B.L. 1987Persistence of 1,2-dibromoethane in soils: Entrapment in intraparticle microporesEnviron. Sci. Technol.2112011208CrossRefGoogle Scholar
  67. Taylor, R. 1999Lecture Notes on Fullerene Chemistry, A Handbook for ChemistsImperial College Press LondonUKGoogle Scholar
  68. Weber, W.J.J., Huang, W., Yu, H. 1998Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments. 2. Effects of soil organic matter heterogeneityJ. Contam. Hydrol.31149165CrossRefGoogle Scholar
  69. Wei, X., Wu, M., Qi, L., Xu, Z. 1997Selective solution-phase generation and oxidation reaction of C60n− (n = 1,2)and formation of an aqueous colloical solution of C60J. Chem. Soc., Perkin Trans.213891393Google Scholar
  70. Weisman, R.B., Heymann, D., Bachilo, S.M. 2001Synthesis and characterization of the “missing” oxide of C60: [5,6]-open C60OJ. Am. Chem. Soc.12397209721CrossRefPubMedGoogle Scholar
  71. Xia, G., Pignatello, J.J. 2001Detailed sorption isotherms of polar and apolar compounds in a high-organic soilEnviron. Sci. Technol.358494CrossRefPubMedGoogle Scholar
  72. Zhu, D., Hyun, S., Pignatello, J.J., Lee, L.S. 2004Evidence for π–π electron donor–acceptor interactions between π-donor aramatic compounds and π-acceptor sites in soil organic matter through pH effects on sorptionEnviron. Sci. Technol.3843614368CrossRefPubMedGoogle Scholar
  73. Zhu, D., Pignatello, J.J. 2005Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a modelEnviron. Sci. Technol.3920332041CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringRice UniversityHouston

Personalised recommendations