Skip to main content
Log in

Modeling and Simulation of Titania Synthesis in Two-dimensional Methane–air Flames

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The formation and growth of titanium dioxide nanoparticles in two-dimensional, non-premixed methane–air flames is investigated via direct numerical simulation. The simulations are performed by capturing the spatio-temporal evolution of the fluid, chemical, and particle fields. The fluid is described by the conservation of mass, momentum, and energy equations; species transport is augmented by the effects of methane–air combustion and the oxidation of titanium tetrachloride; and a nodal approximation to the general dynamic equation is used to represent the effects of nucleation, condensation and coagulation. Simulations are performed for two initial reactant concentration levels, 20% and 30% titanium tetrachloride by mass. The evolution of the temperature, chemical and particle fields as a function of space and size are presented. Results indicate that particle formation and growth is mixing limited in this study and the mean particle diameter and geometric standard deviation increase as the concentration level of the initial reactants increases. In general, high geometric standard deviations correspond to a large particle sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.K. Akhtar S. Vemury S.E. Pratsinis (1994) ArticleTitleCompetition between TiCl4 hydrolysis and oxidation and its effect on product TiO2 powder AIChE J. 40 IssueID7 1183–1192 Occurrence Handle10.1002/aic.690400709 Occurrence Handle1:CAS:528:DyaK2cXkvVKkur4%3D

    Article  CAS  Google Scholar 

  • M.K. Akhtar Y. Xiong S.E. Pratsinis (1991) ArticleTitleVapor synthesis of titania powder by titanium tetrachloride oxidation AIChE J. 37 IssueID10 1561–1570 Occurrence Handle10.1002/aic.690371013 Occurrence Handle1:CAS:528:DyaK3MXmtlyjurY%3D

    Article  CAS  Google Scholar 

  • P. Biswas C.Y. Wu M.R. Zachariah B. McMillin (1997) ArticleTitleCharacterization of iron oxide-silica nanocomposites in flames: Part II: Comparison of discrete-sectional model predictions to experimental data J. Mat. Res. 12 714–723 Occurrence Handle1:CAS:528:DyaK2sXhvVyms70%3D

    CAS  Google Scholar 

  • M. Bui-Pham (1992) Studies in Structures of Laminar Hydrocarbon Flames University of California San Diego, CA

    Google Scholar 

  • M.W.J. Chase (Eds) (1998) NIST-JANAF Thermodynamics Tables EditionNumber4 American Chemical Society, American Institute of Physics for the National Institute of Standards and Technology Washington, DC, New York

    Google Scholar 

  • M. Formenti F. Juillet P. Meriaudeau S.J. Teichner P. Vergnon (1972) Preparation in a Hydrogen–Oxygen Flame of Ultrafine Metal Oxide Particles G.M. Higy (Eds) Aerosols and Atmospheric Chemistry Academic Press, Academic Press New York, NY

    Google Scholar 

  • N.A. Fuchs (1964) The Mechanics of Aerosols Pergamon Oxford, England

    Google Scholar 

  • S.C. Garrick M. Khakpour (2004) ArticleTitleThe effects of differential diffusion on nanoparticle coagulation in temporal mixing layers Aerosol Sci. Technol. 38 IssueID8 851–860 Occurrence Handle1:CAS:528:DC%2BD2cXnsVyhtLs%3D

    CAS  Google Scholar 

  • Garrick, S.C., K.E.J. Lehtinen & M.R. Zachariah, 2001. Modeling and Simulation of Nanoparticle Coagulation in High Reynolds Number Incompressible Flows. In: Proc. Joint US Sections Meeting of the Combustion Institute. Oakland, CA

  • F. Gelbard J.H. Seinfeld (1980) ArticleTitleSimulation of multicomponent aerosol dynamics J. Colloid Interface Sci. 78 485–501 Occurrence Handle1:CAS:528:DyaL3MXitVyqsw%3D%3D

    CAS  Google Scholar 

  • F. Gelbard Y. Tambour J.H. Seinfeld (1980) ArticleTitleSectional representations for simulating aerosol dynamics J. Colloid Interface Sci. 76 541–556 Occurrence Handle10.1016/0021-9797(80)90394-X Occurrence Handle1:CAS:528:DyaL3cXkvVSksrg%3D

    Article  CAS  Google Scholar 

  • A.P. George R.D. Murley E.R. Place (1973) ArticleTitleFormation of TiO2 aerosol from the combustion supported reaction of TiCl4 and O2 Symp. Faraday Soc. 70 63–77

    Google Scholar 

  • P. Givi C.K. Madnia C.J. Steinberger M.H. Carpenter J.P. Drummond (1991) ArticleTitleEffects of compressibility and heat release in a high Speed reacting mixing layer Combust. Sci. Technol. 78 33–68 Occurrence Handle1:CAS:528:DyaK3MXltlyqu7o%3D

    CAS  Google Scholar 

  • J. Hsu S. Mahalingam (2003) ArticleTitlePerformance of reduced reaction mechanisms in unsteady nonpremixed flame simulations Combust. Theory Modeling 7 365–382

    Google Scholar 

  • C.-H. Hung J.L. Katz (1992) ArticleTitleFormation of mixed oxide powders in flames TiO2–SiO2 J. Mat. Res. 7 1861–1869 Occurrence Handle1:CAS:528:DyaK38XkvFGrsb8%3D

    CAS  Google Scholar 

  • James, S. & F.A. Jaberi, 2000. Large scale simulations of two-dimenstional nonpremixed methane jet flames. Combust. Flame. 465–487

  • T. Johannessen S.E. Pratsinis H. Livbjerg (2001) ArticleTitleComputational analysis of coagulation and coalescence in the flame synthesis of titania particles Powder Technol. 118 242–250 Occurrence Handle1:CAS:528:DC%2BD3MXlsFyrtro%3D

    CAS  Google Scholar 

  • P.E. Kloeden E. Platen (1995) Numerical Solution of Stochastic Differential Equations, Vol. 23 of Applications of Mathematics, Stochastic Modelling and Applied Probability Springer-Verlag New York, NY

    Google Scholar 

  • K.A. Kusters S.E. Pratsinis (1995) ArticleTitleStrategies for control of ceramic powder synthesis by gas-to-particle conversion Powder Technol. 82 IssueID1 79–91 Occurrence Handle1:CAS:528:DyaK2MXjsFejtrk%3D

    CAS  Google Scholar 

  • B.W. Lee J.I. Jeong J.Y. Hwang M. Choi S.H. Chung (2001) ArticleTitleAnalysis of growth of non-spherical silica particles in a counterflow diffusion flame considering chemical reactions, coagulation and coalescence J. Aerosol Sci. 32 165–185 Occurrence Handle1:CAS:528:DC%2BD3MXktlynsA%3D%3D

    CAS  Google Scholar 

  • K.E.J. Lehtinen M.R. Zachariah (2001) ArticleTitleSelf-preserving theory for the volume distribution of particles undergoing brownian coagulation J. Colloid Interf. Sci. 242 314–318 Occurrence Handle1:CAS:528:DC%2BD3MXmvFOku78%3D

    CAS  Google Scholar 

  • K.E.J. Lehtinen M.R. Zachariah (2002) ArticleTitleEnergy accumulation in nanoparticle collision and coalescence processes J. Aerosol Sci. 33 357–368 Occurrence Handle1:CAS:528:DC%2BD3MXos1Whs7Y%3D

    CAS  Google Scholar 

  • P.A. Libby F.A. Williams (Eds) (1994) Turbulent Reacting Flows Academic Press London, UK

    Google Scholar 

  • P.A. McMurtry W.-H. Jou J.J. Riley R.W. Metcalfe (1986) ArticleTitleDirect numerical simulations of a reacting mixing layer with chemical heat release AIAA J. 24 962–970 Occurrence Handle1:CAS:528:DyaL28XktVymu7c%3D Occurrence Handle10.2514/3.9371

    Article  CAS  Google Scholar 

  • S. Miller S.C. Garrick (2004) ArticleTitleNanoparticle coagulation in a planar jet Aerosol Sci. Technol. 38 IssueID1 79–89 Occurrence Handle10.1080/02786820490247669 Occurrence Handle1:CAS:528:DC%2BD2cXovVSjuw%3D%3D

    Article  CAS  Google Scholar 

  • S. Modem S.C. Garrick (2003) ArticleTitleNanoparticle concentrations in temporal mixing layers: mean and size-selected images J. Visualization 6 IssueID3 333–342

    Google Scholar 

  • Modem, S., S.C. Garrick, M.R. Zachariah & K.E.J. Lehtinen, 2002. Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer. In: Proceedings of the 29th Symp. (Int.) on Combustion. The Combustion Institute, Pittsburgh, PA

  • E.G. Moody L.R. Collins (2003) ArticleTitleEffect of mixing on the nucleation and growth of titania particles Aerosol Sci. Technol. 37 IssueID5 403–424 Occurrence Handle10.1080/02786820300979 Occurrence Handle1:CAS:528:DC%2BD3sXhvFOqtw%3D%3D

    Article  CAS  Google Scholar 

  • S.E. Pratsinis (1989) ArticleTitleParticle production by gas-to-particle conversion in turbulent flows J. Aerosol Sci. 20 IssueID8 1461–1464 Occurrence Handle1:CAS:528:DyaK3cXhs1Wgu70%3D

    CAS  Google Scholar 

  • S.E. Pratsinis (1998) ArticleTitleFlame aerosol synthesis of ceramic powders Prog. Energy Combust. Sci. 24 197–219 Occurrence Handle10.1016/S0360-1285(97)00028-2 Occurrence Handle1:CAS:528:DyaK1cXjvVequ78%3D

    Article  CAS  Google Scholar 

  • S.E. Pratsinis H. Bai P. Biswas M. Frenklach S.V.R. Mastrangelo (1990) ArticleTitleKinetics of titanium (IV) chloride oxidation J. Am. Ceram. Soc 73 2158–2162 Occurrence Handle10.1111/j.1151-2916.1990.tb05295.x Occurrence Handle1:CAS:528:DyaK3cXltVSgt78%3D

    Article  CAS  Google Scholar 

  • S.E. Pratsinis S. Vemury (1996) ArticleTitleParticle formation in gases: A review Powder Technol. 88 IssueID3 267–273 Occurrence Handle1:CAS:528:DyaK28Xmtlems70%3D

    CAS  Google Scholar 

  • S.E. Pratsinis W. Zhu S. Vemury (1996) ArticleTitleThe role of gas mixing in flame synthesis of titania powders Powder Techol. 86 87–93 Occurrence Handle1:CAS:528:DyaK28XhtVCnsL8%3D

    CAS  Google Scholar 

  • A.J. Rulison P.F. Miquel J.L. Katz (1996) ArticleTitleTitania and silica powders produced in a counterflow diffusion flame J. Mater. Res. 11 IssueID12 3083–3089 Occurrence Handle1:CAS:528:DyaK28XnsV2nsro%3D

    CAS  Google Scholar 

  • K. Seshadri N. Peters (1988) ArticleTitleAsymptotic structure and extinction of methane–air diffusion flames Combust. Flame 73 23 Occurrence Handle10.1016/0010-2180(88)90051-X Occurrence Handle1:CAS:528:DyaL1cXkt1CqsLk%3D

    Article  CAS  Google Scholar 

  • P. Spicer O. Chaoul S. Tsantilis S.E. Pratsinis (2002) ArticleTitleTitania formation by TiCl4 gas phase oxidation, surface growth and coagulation J. Aerosol Sci. 33 IssueID1 17–34 Occurrence Handle1:CAS:528:DC%2BD3MXnslensbY%3D

    CAS  Google Scholar 

  • W.J. Stark S.E. Pratsinis (2002) ArticleTitleAerosol flame reactors for manufacture of nanoparticles Power Technol. 126 103–108 Occurrence Handle1:CAS:528:DC%2BD38XksFKnt78%3D

    CAS  Google Scholar 

  • C.J. Steinberger T.J. Vidoni P. Givi (1993) ArticleTitleThe compositional structure and the effects of exothermicity in a nonpremixed planar jet flame Combust. Flame 94 217–232 Occurrence Handle10.1016/0010-2180(93)90069-F Occurrence Handle1:CAS:528:DyaK3sXmtVKgs7o%3D

    Article  CAS  Google Scholar 

  • G.D. Ulrich (1971) ArticleTitleTheory of particle formation and growth in oxide synthesis flames Comb. Sci. Tech 4 47–57 Occurrence Handle1:CAS:528:DyaE38XjsFKmug%3D%3D

    CAS  Google Scholar 

  • Wang G & S.C. Garrick, in press. Medeling and simulation of titania formation and growth in temporal mixing layers. J. Aerosol. Sci.

  • K. Wegner S.E. Pratsinis (2003) ArticleTitleNozzle-quenching process for controlled flame synthesis of titania nanoparticles AIChE J. 49 IssueID7 1667–1675 Occurrence Handle10.1002/aic.690490707 Occurrence Handle1:CAS:528:DC%2BD3sXlsV2rsLY%3D

    Article  CAS  Google Scholar 

  • G. Yang P. Biswas (1997) ArticleTitleStudy of the sintering of nanosized titania agglomerates in flames using in situ light scattering measurements Aerosol Sci. Tech. 27 507–521 Occurrence Handle1:CAS:528:DyaK2sXmsVCqs78%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean C. Garrick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Garrick, S.C. Modeling and Simulation of Titania Synthesis in Two-dimensional Methane–air Flames. J Nanopart Res 7, 621–632 (2005). https://doi.org/10.1007/s11051-005-4966-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-4966-7

Keywords

Navigation