Journal of Nanoparticle Research

, Volume 7, Issue 2–3, pp 209–217 | Cite as

On the formation of protected gold nanoparticles from AuCl4 by the reduction using aromatic amines

  • Chandramouli Subramaniam
  • Renjis T. Tom
  • T. Pradeep
Article

Abstract

Amines are used extensively as reductants and subsequent capping agents in the synthesis of metal nanoparticles, especially gold, due to its affinity to nitrogen. Taking 2-methyl aniline as an example, we show that metal reduction is followed by polymerization of the amine, while part of it covers the nanoparticle surface another fraction deposits in the solution. It is found that the oxidative polymerization of the amine goes in step with the formation of gold nanoparticles. The gold nanoparticles thus formed have a mean diameter of 20 nm. The polymerized amine encapsulates the gold nanoparticle forming a robust shell of about 5 nm thickness, making the gold core inert towards mineralizing agents such as chloroform, bromoform, sodium cyanide, benzylchloride, etc. which react with the naked gold nanoparticles. The deposited polymer is largely protonated, taking up protons from the medium during its formation. Similar results have been observed in the case of aniline also. The materials have been fully characterized by spectroscopy and microscopy.

Keywords

gold nanoparticles poly(2-methyl aniline) core–shell nanomaterials oxidative polymerization MALDI-MS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade, E.M., Moline, F.V., Florit, M.I., Posadas, D. 1996IR response of poly(o-toluidine): Spectral modifications upon redox state changeElectroanal. Chem.4191521CrossRefGoogle Scholar
  2. Aslam, M., Fu, L., Su, M., Vijayamohanan, K., Dravid, V.P. 2004Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticlesJ. Mater. Chem.1417951797CrossRefGoogle Scholar
  3. Brust, M., Walker, M., Bethell, D., Schiffrin, DJ., Whyman, R. 1994Synthesis of thiol-derivatised gold nanoparticle in a two-phase liquid–liquid systemJ. Chem. Soc. Chem. Commun.7801802CrossRefGoogle Scholar
  4. Colombian, P., Gruger, A., Novak, A., Regis, A. 1994Infrared and Raman study of polyaniline Part I. Hydrogen bonding and electronic mobility in emeraldine salts.J. Mol. Struct.317261266CrossRefGoogle Scholar
  5. Eswaranand, V., Pradeep, T. 2002Zirconia protected silver clusters through functionalised monolayersJ. Mater. Chem.1224212425CrossRefGoogle Scholar
  6. Graf, C., Blaaderen, A. 2002Metallodielectric colloidal core–shell particles for photonic applicationsLangmuir18524534CrossRefGoogle Scholar
  7. Hostetler, M.J., Wingate, JE., Zhong, CJ., Harris, JE., Vachet, RW., Clark, MR., Londono, JD., Green, SJ., Stokes, JJ., Wignall, GD., Glish, GL., Porter, MD., Evans, ND., Murray, R.W. 1998Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core sizeLangmuir141730CrossRefGoogle Scholar
  8. Kumar, A., Mandal, S., Selvakannan, PR., Pasricha, R., Mandale, AB., Sastry, M. 2003Investigation into the interaction between surface-bound alkylamines and gold nanoparticlesLangmuir1962776282CrossRefGoogle Scholar
  9. Leff, D.V., Brandt, L., Heath, J.R. 1996Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary aminesLangmuir1247234730CrossRefGoogle Scholar
  10. Liu, G., Freund, M.S. 1997New approach for the controlled cross-linking of polyaniline: Synthesis and characterizationMacromolecules3056605665CrossRefGoogle Scholar
  11. Mitra, S., Nair, B., Pradeep, T., Goyal, PS., Mukhopadhyay, R. 2002Alkyl chain dynamics in monolayer protected clusters (MPCs): A quasielastic neutron scattering investigationJ. Phys. Chem. B10639603967CrossRefGoogle Scholar
  12. Mukhopadhyay, R., Mitra, S., Tsukushi, I., Ikeda, S., Pradeep, T. 2003Evolution of dynamical motions in monolayer protected metal clustersChem. Phys.292223227CrossRefGoogle Scholar
  13. Nair A.S., Pradeep T., I. Maclaren. (2004a). An investigation of the structure of stearate monolayer on Au@ZrO2 and Ag@ZrO2 core–shell nanoparticles. J. Mater. Chem. DOI: 10.1039/b313850jGoogle Scholar
  14. Nair A.S., Suryanarayanan V., Tom RT., Pradeep T. (2004b). Porosity of core shell nanoparticles. J. Mater. Chem. In pressGoogle Scholar
  15. Nair, A.S., Tom, RT., Suryanarayanan, V., Pradeep, T. 2003ZrO2 bubbles from core shell nanoparticlesJ. Mater. Chem.13297300CrossRefGoogle Scholar
  16. Nair, A.S., Pradeep, T. 2003Halocarbon mineralization and catalytic destruction by metal nanoparticlesCurr. Sci.8415601564Google Scholar
  17. Nakao, H., Shiigi, H., Yamamoto, Y., Tokonami, S., Nagaoka, T., Sugiyama, S., Ohtani, T. 2003Highly ordered assemblies of Au nanoparticles organized on DNANano Lett.1013911394CrossRefGoogle Scholar
  18. Patel, H., Das, SK., Sundararajan, T., Nair, AS., George, B., Pradeep, T. 2003Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effectsAppl. Phys. Lett.8329312933CrossRefGoogle Scholar
  19. Pillalamarri S.K., Blum FD., M.F. Bertino. (2004). Surface-initiated polyaniline-coated gold nanoparticles. Abstracts of Papers, 228th ACS National Meeting, Philadelphia, PA, United States, August 22–26. 2004Google Scholar
  20. Pradeep, T., Mitra, S., Nair, AS., Mukhopadhyay, R. 2004Dynamics of alkyl chains in monolayer protected Au and Ag clusters and silver thiolates: A comprehensive QENS investigationJ. Phys. Chem. B10870127020CrossRefGoogle Scholar
  21. Sandhyarani, N., Pradeep, T. 2003Towards understanding structure and phase transitions of self-assembled monolayers on two- and three-dimensional surfaces: An overview of current effortsInt. Rev. Phys. Chem.22221262CrossRefGoogle Scholar
  22. Selvakannan, P.R., Mandal, S., Phadtare, S., Pasricha, R., Sastry, M. 2003Capping of gold nanoparticles by the amino acid lysine renders them water-dispersibleLangmuir1935453549CrossRefGoogle Scholar
  23. Thomas, K.G., Kamat, P.V. 2000Making gold nanoparticles glow: Enhanced emission from a surface-bound fluoroprobeJ. Am. Chem. Soc.12226552656CrossRefGoogle Scholar
  24. Thomas, K.G., Zajicek, J., Kamat, P.V. 2002Surface binding properties of tetraoctylammonium bromide-capped gold nanoparticlesLangmuir1837223727CrossRefGoogle Scholar
  25. Tom, R.T., Nair, AS., Singh, N., Aslam, M., Nagendra, CL., Philip, R., Vijayamohanan, K., Pradeep, T. 2003Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2 and AgZrO2 core-shell nano particles: One step synthesis, characterization, spectroscopy and optical limiting propertiesLangmuir1934393445CrossRefGoogle Scholar
  26. Wang, R., Yang, J., Zheng, Z., Carducci, MD., Jiao, J., Seraphin, S. 2001Dendron-controlled nucleation and growth of gold nanoparticlesAngew. Chem.40549551CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Chandramouli Subramaniam
    • 1
  • Renjis T. Tom
    • 1
  • T. Pradeep
    • 1
  1. 1.Department of Chemistry and Sophisticated Analytical Instrument FacilityIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations