Journal of Nanoparticle Research

, Volume 6, Issue 4, pp 415–419 | Cite as

The structural and optical properties of gallium arsenic nanoparticles

  • Jonathan Hung
  • Si-chen Lee
  • Chih-ta Chia


Spherical gallium arsenic nanoparticles prepared by thermal evaporation method have been fabricated successfully. The structural and optical properties of GaAs nanoparticles are studied in detail. It is found that while the growth pressure rises from 0.4 to 5 Torr, the average size of GaAs nanoparticles increases from 6 to 12 nm and standard deviation keeps almost the same (∼2 nm) except for 0.5 Torr. By using transmission electron microscopy and Raman spectra, a critical preparation condition has been found which characterize the amorphous to crystal transition of GaAs nanoparticles.

GaAs nanoparticle thermal evaporation structural properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asryan L.V., S. Luryi & R.A. Suris, 2003. Internal efficiency of semiconductor lasers with a quantum-confined active region. IEEE J. Quan. Elec. 39, 404.Google Scholar
  2. Bryllert T., M. Borgstrom, T. Sass, B. Gustafson, L. Landin, L.E. Wernersson, W. Seifert & L. Samuelson, 2002. Designed emitter states in resonant tunneling through quantum dots. Appl. Phys. Lett. 80, 2681.Google Scholar
  3. Ekimov A.I., A.L. Efros & A.A. Onushchenko, 1985. Quantum size effect in semiconductor microcrystals. Solid State Commun. 56, 921.Google Scholar
  4. Kher S.S. & R.L. Wells, 1994. A Straightforward, New Method for the Synthesis of Nanocrystalline GaAs and GaP. Chem. Mater. 6, 2056.Google Scholar
  5. Kochman B., A.D. Stiff-Roberts, S. Chakrabarti, J.D. Phillips, S. Krishna, J. Singh & P. Bhattacharya, 2003. Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors. IEEE J. Quan. Elec. 39, 459.Google Scholar
  6. Leburton J.P., Y.B. Lyanda-Geller, 1997. Tunable negative differential resistance in anti-dot diffraction field effect transistor. Appl. Phys. Lett. 70, 634.Google Scholar
  7. Marko I.P., A.D. Andreev, A.R. Adams, R. Krebs, J.P. Reithmaier & A.A. Forchel, 2003. Importance of Auger recombination in InAs 1.3 lm quantum dot lasers. Elec. Lett. 39, 58.Google Scholar
  8. Marsal L., L. Besombes, F. Tinjod, K. Kheng, A. Wasiela, B. Gilles, J.L. Rouvie're & H. Mariette, 2002. Zero-dimensional excitons in CdTe/ZnTe nanostructures. J. Appl. Phys. 91, 4936.Google Scholar
  9. Ryzhii V., 2001. Negative differential photoconductivity in quantum-dot infrared photodetectors. Appl. Phys. Lett. 78, 3346.Google Scholar
  10. Seufert J., M. Rambach, G. Bacher, A. Forchel, T. Passow & D. Hommel, 2003. Single-electron charging of a self-assembled II–VI quantum dot. Appl. Phys. Lett. 82, 3946.Google Scholar
  11. Tang S.F., S.Y. Lin & S.C. Lee, 2002. Near-room temperature operation of InAs/GaAs quantum dot infrared photodetector. IEEE Trans. Electron Devices 49, 1341.Google Scholar
  12. Walter G., T. Chung & N. Holonyak, 2002. High-gain coupled InGaAs quantum well InAs quantum dot AlGaAs–GaAs– InGaAs–InAs heterostructure diode laser operation. Appl. Phys. Lett. 80, 1126.Google Scholar
  13. Weiss D., P. Grambow, K. von Klitzing, A. Menschig & G. Weimann, 1991. Fabrication and characterization of deep mesa etched “anti”-dot superlattices in GaAs-AlGaAs heterostructures. Appl. Phys. Lett. 58, 2960.Google Scholar
  14. Yoffe A.D., 2002. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-twodimensional systems. Adv. Phys. 51, 799.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jonathan Hung
    • 1
  • Si-chen Lee
    • 1
  • Chih-ta Chia
    • 1
  1. 1.Department of Electrical Engineering and Graduate Institute of Electronic EngineeringNational Taiwan UniversityChina

Personalised recommendations