Journal of Nanoparticle Research

, Volume 7, Issue 1, pp 75–88 | Cite as

A model for supersonic and hypersonic impactors for nanoparticles

Article

Abstract

In this study the performance of supersonic and hypersonic impactors for collection efficiency of nanoparticles (in the size range of 2–100 nm) under various operating conditions is analyzed. Axisymmetric forms of the compressible Navier–Stokes and energy equations are solved and the airflow and thermal condition in the impactor are evaluated. A Lagrangian particle trajectory analysis procedure is used and the deposition rates of different size particles under various operating conditions are studied. For dilute particle concentrations, the assumption of one-way interaction is used and the effect of particles on gas flow field is ignored. The importance of drag, lift and Brownian forces on particle motions in supersonic impactors is discussed. Sensitivity of the simulation results to the use of different assumptions for the Cunningham correction coefficient is studied. It is shown that accurate evaluation of the gas mean free path and the Cunningham correction factor is important for accurate simulation of nano-particle transport and deposition in supersonic/hypersonic impactors. The computer simulation results are compared favorably with the available experimental data.

Keywords

aerosols aerodynamics hypersonic impactor particle deposition modeling and simulation supersonic impactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abouali O. & G. Ahmadi, 2003. Bow shock effect on particle transport and deposition in a hypersonic impactor. ASME Fluid Engineering Summer Conference, Honolulu, Hawaii, July 7–11, 2003Google Scholar
  2. Biswas, P., Flagan, R.C. 1984High-velocity inertial impactorsEnviron. Sci. Technol.18611Google Scholar
  3. Fernandezdela Mora, J., Rao, N., McMurry, P.H. 1990aInertial impaction of the fine particles at moderate reynolds number in the transonic regime with a thin-plate orifice nozzleJ. Aerosol Sci.21889Google Scholar
  4. Fernandez de la Mora, J., Hering, S.V., Rao, N., McMurry, P.H. 1990bHypersonic impaction of ultrafine particlesJ. Aerosol Sci.21169Google Scholar
  5. Flagan, R.E. 1982Compressible flow inertial impactorJ. Colloid Interface Sci.87291Google Scholar
  6. Forney, L.J. 1991Particle impaction in axially symmetric supersonic flowAerosol Sci. Technol.1549Google Scholar
  7. FLUENT User’s Guid (Version 5), 1998. Fluent Inc. Lebanon, NHGoogle Scholar
  8. Gomez-Moreno, F.J., Rosell-Llompart, J., Fernandezdela Mora, J. 2002Turbulent transition in impactor jets and its effect on impactor resolutionJ. Aerosol Sci.33459Google Scholar
  9. He, C., Ahmadi, G. 1999Particle deposition in a nearly developed turbulent duct flow with electrophoresisJ. Aerosol Sci.30739Google Scholar
  10. Henderson, C.B. 1976Drag coefficient of spheres in continuum and rarefied flowsAIAA J.14707Google Scholar
  11. Hering, S.V., Marple, V.A. 1986

    Low-pressure and micro orifice impactors

    Lodge, J.P.Chan, T.L. eds. Cascade ImpactorsAmerican Industrial Hygiene AssociationAkron, Ohio
    Google Scholar
  12. Hering, S.V., Friedlander, S.K., Collins, J.J., Richards, L.W. 1979Design and evaluation of a new low-pressure impactor. 2Envir. Sci. Technol.13184Google Scholar
  13. Hinds, W.C. 1999Aerosol Science and TechnologyWileyNew YorkGoogle Scholar
  14. Ishii, R., Umeda, Y. 1989Numerical analysis of gas-particle flowsJ. Fluid Mech.203473Google Scholar
  15. Jurcik, B.J., Brock, J.R., Trachtenberg, I. 1989A study of low pressure particle impaction processesJ. Aerosol Sci.20701Google Scholar
  16. Kauppinen, E.I., Hillamo, R.E. 1989Modification of the University of Washington Mark 5 in-stak ImpactorJ. Aerosol Sci.20813Google Scholar
  17. Li, A., Ahmadi, G. 1993Deposition of aerosols on surfaces in a turbulent channel flowInt. J. Engng Sci.31435Google Scholar
  18. Mallina, R.V., Wexler, A.S., Rhoads, K.P., Johnson, M.V. 2000High speed particle beam generation: A Dynamic Focusing Mechanism For Selecting Ultrafine ParticlesJ. Aerosol Sci.3387Google Scholar
  19. Oh, J.J., Kim, S.S. 1994Particle deposition on a truncated cylinder in a supersonic flow at low pressureAerosol Sci. Technol.20375Google Scholar
  20. Olawoyin, O.O., Raunemaa, T.M., Hopke, P.K. 1995A system for aerodynamically sizing ultrafine radioactive particlesAerosol Sci. Technol.23121Google Scholar
  21. Reineking, A., Scheibel, H.G., Hussin, A., Becker, K.H., Porstendorfer, J. 1984Measurement of stage efficiency function including interstage losses for a sierra and berner impactor and evaluation of data by a modified simplex methodJ. Aerosol Sci.15376Google Scholar
  22. Tafreshi, H.V., Benedek, G., Piseri, G., Vinati, S., Barborini, E., Milani, P. 2002A simple nozzle configuration for the production of low divergence supersonic cluster beam by aerodynamic focusingAerosol Sci. Technol.36593Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Mechanical and Aeronautical EngineeringClarkson UniversityPotsdamUSA
  2. 2.Department of Mechanical EngineeringShiraz UniversityShirazIran

Personalised recommendations