Natural Computing

, Volume 16, Issue 3, pp 497–505 | Cite as

Directed evolution of biocircuits using conjugative plasmids and CRISPR-Cas9: design and in silico experiments

  • David Beneš
  • Alfonso Rodríguez-Patón
  • Petr Sosík


Recent links between computer science and synthetic biology allow for construction of many kinds of algorithmic processes within cells, obtained either by a direct engineered design or by an evolutionary search. In the latter case, horizontal gene transfer and especially transfer of plasmids by conjugation is generally respected as a crucial source of genetic diversity in bacteria. While some previous studies focused on mutations as the crucial principle to obtain diversity for engineered evolution, here we consider conjugation itself as a tool to generate diversity from a pre-determined library of biocircuits basic components. The recent development of CRISPR-Cas9 and its programmable DNA cutting ability makes it a powerful selection tool able to remove nonfunctional biocircuits from a cell population. In this paper, we describe a framework for controlled bacterial evolution of biocircuits based on conjugation and on CRISPR-Cas9, resulting in a direct biological implementation of an evolutionary algorithm. In silico experiments provide data to estimate the computational/search capability of plasmid-based engineered evolution.


Directed evolution Programmed evolution Evolutionary search Genetic circuit Biocircuit Conjugative plasmid CRISPR-Cas9 



This work was supported by the European Union projects BACTOCOM (248919/FP7-ICT-2009-4), PLASWIRES (612146/FP7-ICT-FET-Proactive) and EVOPROG (610730/FP7-ICT-FET-Proactive), by the National Programme of Sustainability (NPU II) of the Czech Republic, project IT4Innovations Excellence in Science—LQ1602, by the Silesian University in Opava under the Student Funding Scheme, project SGS/13/2016, and by Spanish projects TIN2012-36992 and TIN2016-81079-R.


  1. Amos M et al (2015) Bacterial computing with engineered populations. Philos Trans R Soc A. doi: 10.1098/rsta.2014.0218 Google Scholar
  2. Barrick JE et al (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247CrossRefGoogle Scholar
  3. Beneš D, Sosík P, Rodríguez-Patón A (2015) An autonomous in vivo dual selection protocol for Boolean genetic circuits. Artif Life 21:247–260CrossRefGoogle Scholar
  4. Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12(5):381–390CrossRefGoogle Scholar
  5. del Campo I et al (2012) Determination of conjugation rates on solid surfaces. Plasmid 67(2):174–182CrossRefGoogle Scholar
  6. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338CrossRefGoogle Scholar
  7. Esvelt KM, Wang HH (2012) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641CrossRefGoogle Scholar
  8. Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472(7344):499–503CrossRefGoogle Scholar
  9. Frost LS, Leplae R, Summers AO, Toussaint A, Edmonton A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732CrossRefGoogle Scholar
  10. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342CrossRefGoogle Scholar
  11. Goñi-Moreno A, Amos M, de la Cruz F (2013) Multicellular computing using conjugation for wiring. PLoS ONE 8(6):e65986. doi: 10.1371/journal.pone.0065986 CrossRefGoogle Scholar
  12. Guet CC, Elowitz MB, Hsing W, Leibler S (2002) Combinatorial synthesis of genetic networks. Science 296:1466–1470CrossRefGoogle Scholar
  13. Harvey I, Tomko N (2010) Binomics—where metagenomics meets the binary world. In: Proceedings of the Alife XII conference, 370–377Google Scholar
  14. Kreft J et al (2001) Individual-based modelling of biofilms. Microbiology 147:2897–2912CrossRefGoogle Scholar
  15. Krone SM, Lu R, Fox R, Suzuki H, Top EM (2007) Modeling the spatial dynamics of plasmid transfer and persistence. Microbiology 153:2803–2816CrossRefGoogle Scholar
  16. Levin BR, Stewart FM (1980) The population biology of bacterial plasmids: a priori conditions for the existence of mobilizable nonconjugative factors. Genetics 94:425–443MathSciNetGoogle Scholar
  17. Llosa M, Gomis-Rüth FX, Coll M, De La Cruz F (2002) Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol 45:1–8CrossRefGoogle Scholar
  18. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740CrossRefGoogle Scholar
  19. Mozhayskiy V, Tagkopoulos I (2013) Microbial evolution in vivo and in silico: methods and applications. Integr Biol 5:262–277CrossRefGoogle Scholar
  20. Norman A, Hansen LH, Sørensen SJ (2009) Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc B 364:2275–2289CrossRefGoogle Scholar
  21. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16(7):379–394CrossRefGoogle Scholar
  22. Prestes García A, Rodríguez-Patón A (2015a) BactoSim—an individual-based simulation environment for bacterial conjugation. PAAMS 2015:275–279Google Scholar
  23. Prestes García A, Rodríguez-Patón A (2015b) A preliminary assessment of three strategies for the agent-based modeling of bacterial conjugation. PACBB 2015:1–9Google Scholar
  24. Rodrigo G, Carrera J, Jaramillo A (2007a) Genetdes: automatic design of transcriptional networks. Bioinformatics 23:1857–1858CrossRefGoogle Scholar
  25. Rodrigo G, Carrera J, Jaramillo A (2007b) Asmparts: assembly of biological model parts. Syst Synth Biol 1:167–170CrossRefGoogle Scholar
  26. Seoane J et al (2011) An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiol Ecol 75:17–27CrossRefGoogle Scholar
  27. Simonsen L, Gordon DM, Stewart FM, Levin BR (1990) Estimating the rate of plasmid transfer: an end-point method. J Gen Microbiol 136:2319–2325CrossRefGoogle Scholar
  28. Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3(9):700–710CrossRefGoogle Scholar
  29. Sternberg SH, Doudna JA (2015) Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell 58(4):568–574CrossRefGoogle Scholar
  30. Tomko N, Harvey I, Philippides A (2013) Unconstrain the population: the benefits of horizontal gene transfer in genetic algorithms. SmartData, privacy meets evolutionary robotics. Springer, Berlin, pp 117–127Google Scholar
  31. The BACTOCOM project web page.
  32. The PLASWIRES project web page.
  33. Yokobayashi Y, Arnold FH (2005) A dual selection module for directed evolution of genetic circuits. Nat Comput 4(3):245–254MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • David Beneš
    • 1
  • Alfonso Rodríguez-Patón
    • 2
  • Petr Sosík
    • 1
  1. 1.Research Institute of the IT4Innovations Centre of Excellence, Faculty of Philosophy and ScienceSilesian University in OpavaOpavaCzech Republic
  2. 2.Departamento de Inteligencia ArtificialUniversidad Politécnica de MadridMadridSpain

Personalised recommendations