Skip to main content
Log in

Activity in Boolean networks

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In this paper we extend the notion of activity for Boolean networks introduced by Shmulevich and Kauffman (Phys Rev Lett 93(4):48701:1–4, 2004). In contrast to existing theory, we take into account the actual graph structure of the Boolean network. The notion of activity measures the probability that a perturbation in an initial state produces a different successor state than that of the original unperturbed state. It captures the notion of sensitive dependence on initial conditions, and provides a way to rank vertices in terms of how they may impact predictions. We give basic results that aid in the computation of activity and apply this to Boolean networks with threshold functions and nor functions for elementary cellular automata, d-regular trees, square lattices, triangular lattices, and the Erdős–Renyi random graph model. We conclude with some open questions and thoughts on directions for future research related to activity, including long-term activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adiga A, Kuhlman CJ, Mortveit HS, Vullikanti AKS (2013) Sensitivity of diffusion dynamics to network uncertainty. In: Proceedings of the twenty-seventh AAAI conference on artificial intelligence (AAAI-13), July 14–18, 2013. Bellevue, Washington, USA, pp 2–8

  • Adiga A, Galyean H, Kuhlman CJ, Levet M, Mortveit HS, Wu S (2015) Network structure and activity in Boolean networks. In: Kari J (ed) Cellular automata and discrete complex systems: proceedings of AUTOMATA 2015, Turku, Finland, June 8–10, 2015, Lecture Notes in Computer Science, vol 9099, pp 210–223, doi:10.1007/978-3-662-47221-7_16

  • Aldana M, Coppersmith S, Kadanoff LP (2003) Boolean dynamics with random couplings. In: Perspectives and problems in nonlinear science, Springer, pp 23–89

  • Baetens JM, De Baets B (2010) Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians. Chaos 20:1–15. doi:10.1063/1.3460362

    Article  MathSciNet  MATH  Google Scholar 

  • Baetens JM, Van der Weeën P, De Baets B (2012) Effect of asynchronous updating on the stability of cellular automata. Chaos Solitons Fractals 45:383–394. doi:10.1016/j.chaos.2012.01.002

    Article  MATH  Google Scholar 

  • Derrida B, Pomeau Y (1986) Random networks of automata: a simple annealed approximation. Europhys Lett 1:45–49

    Article  Google Scholar 

  • Fretter C, Szejka A, Drossel B (2009) Perturbation propagation in random and evolved Boolean networks. N J Phys 11:1–13. doi:10.1088/1367-2630/11/3/033005

    Article  Google Scholar 

  • Ghanbarnejad F, Klemm K (2012) Impact of individual nodes in Boolean network dynamics. EPL (Europhys Lett) 99(5):58,006

    Article  Google Scholar 

  • Goles E, Martinez S (1990) Neural and automata networks: dynamical behaviour and applications. Kluwer Academic Publishers, Berlin

    Book  MATH  Google Scholar 

  • Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  MathSciNet  Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Kuhlman CJ, Mortveit HS (2014) Attractor stability in nonuniform Boolean networks. Theor Comput Sci 559:20–33. doi:10.1016/j.tcs.2014.08.010 special volume: Non-uniform Cellular Automata

    Article  MathSciNet  MATH  Google Scholar 

  • Layne L, Dimitrova E, Matthew M (2012) Nested canalyzing depth and network stability. Bull Math Biol. doi:10.1007/s11538-011-9692-y

  • Luo JX, Turner MS (2012) Evolving sensitivity balances Boolean networks. PLoS One 7(e36):010. doi:10.1371/journal.pone.0036010

    Google Scholar 

  • Mortveit HS, Reidys CM (2007) An introduction to sequential dynamical systems. Universitext, Springer. doi:10.1007/978-0-387-49879-9

  • Pomerance A, Ott E, Girvan M, Losert W (2009) The effect of network topology on the stability of discrete state models of genetic control. Proc Nat Acad Sci 106(20):8209–8214

    Article  Google Scholar 

  • Ribeiro AS, Kauffman SA (2007) Noisy attractors and ergodic sets in models of gene regulatory networks. J Theor Biol 247:743–755

    Article  MathSciNet  Google Scholar 

  • Robert F (1986) Discrete iterations. A Metric Study. No. 6 in Springer Series in Computational Mathematics, Springer

  • Serra R, Villani M, Barbieri A, Kauffman S, Colacci A (2010) On the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell types. J Theor Biol 265(2):185–193

    Article  MathSciNet  Google Scholar 

  • Shmulevich I, Kauffman SA (2004) Activities and sensitivities in Boolean network models. Phys Rev Lett 93(4):048701:1–4

    Article  Google Scholar 

  • Shmulevich I, Lähdesmäki H, Dougherty ER, Astola J, Zhang W (2003) The role of certain post classes in Boolean network models of genetic networks. Proc Nat Acad Sci 100(19):10,734–10,739

    Article  Google Scholar 

  • Xiao Y, Dougherty ER (2007) The impact of function perturbations in Boolean networks. Bioinformatics 23(10):1265–1273

    Article  Google Scholar 

Download references

Acknowledgments

We thank our external collaborators and members of the Network Dynamics and Simulation Science Laboratory (NDSSL) for their suggestions and comments. We also thank two anonymous reviewers for valuable comments. This work has been partially supported by DTRA Grant HDTRA1-11-1-0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning S. Mortveit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adiga, A., Galyean, H., Kuhlman, C.J. et al. Activity in Boolean networks. Nat Comput 16, 427–439 (2017). https://doi.org/10.1007/s11047-016-9584-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-016-9584-z

Keywords

Navigation