Advertisement

Natural Computing

, Volume 18, Issue 1, pp 29–46 | Cite as

Challenges in cooperative coevolution of physically heterogeneous robot teams

  • Jorge GomesEmail author
  • Pedro Mariano
  • Anders Lyhne Christensen
Article

Abstract

Heterogeneous multirobot systems have shown significant potential in many applications. Cooperative coevolutionary algorithms (CCEAs) represent a promising approach to synthesise controllers for such systems, as they can evolve multiple co-adapted components. Although CCEAs allow for an arbitrary level of team heterogeneity, in previous works heterogeneity is typically only addressed at the behavioural level. In this paper, we study the use of CCEAs to evolve control for a heterogeneous multirobot system where the robots have disparate morphologies and capabilities. Our experiments rely on a simulated task where a simple ground robot must cooperate with a complex aerial robot to find and collect items. We first show that CCEAs can evolve successful controllers for physically heterogeneous teams, but find that differences in the complexity of the skills the robots need to learn can impair CCEAs’ effectiveness. We then study how different populations can use different evolutionary algorithms and parameters tuned to the agents’ complexity. Finally, we demonstrate how CCEAs’ effectiveness can be improved using incremental evolution or novelty-driven coevolution. Our study shows that, despite its limitations, coevolution is a viable approach for synthesising control for morphologically heterogeneous systems.

Keywords

Evolutionary robotics Cooperative coevolution Multirobot systems Heterogeneous systems Premature convergence Artificial neural networks 

Notes

Acknowledgments

This research was supported by Fundação para a Ciência e Tecnologia (FCT), under Grants SFRH/BD/89095/2012, UID/EEA/50008/2013, and UID/Multi/04046/2013.

References

  1. Blumenthal HJ, Parker GB (2004) Co-evolving team capture strategies for dissimilar robots, vol 2. In: AAAI artificial multiagent learning symposium. AAAI PressGoogle Scholar
  2. Candea C, Hu H, Iocchi L, Nardi D, Piaggio M (2001) Coordination in multi-agent RoboCup teams. Robot Auton Syst 36(2):67–86zbMATHCrossRefGoogle Scholar
  3. Christensen AL, Dorigo M (2006) Incremental evolution of robot controllers for a highly integrated task. In: Nolfi S, Baldassarre G (eds) From animals to animats 9. Springer, Berlin, pp 473–484CrossRefGoogle Scholar
  4. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  5. Doncieux S, Mouret JB (2010) Behavioral diversity measures for evolutionary robotics. In: Congress on evolutionary computation (CEC). IEEE Press, pp 1–8Google Scholar
  6. Doncieux S, Mouret JB (2014) Beyond black-box optimization: a review of selective pressures for evolutionary robotics. Evolu Intell 7(2):71–93CrossRefGoogle Scholar
  7. Dorigo M, Trianni V, Şahin E, Groß R, Labella TH, Baldassarre G, Nolfi S, Deneubourg JL, Mondada F, Floreano D et al (2004) Evolving self-organizing behaviors for a swarm-bot. Auton Robot 17(2–3):223–245CrossRefGoogle Scholar
  8. Dorigo M, Floreano D, Gambardella L, Mondada F et al (2013) Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot Autom Mag 20(4):60–71CrossRefGoogle Scholar
  9. Duan HB, Liu SQ (2010) Unmanned air/ground vehicles heterogeneous cooperative techniques: current status and prospects. Sci China Technol Sci 53(5):1349–1355CrossRefGoogle Scholar
  10. Ducatelle F, Di Caro G, Pinciroli C, Gambardella L (2011) Self-organized cooperation between robotic swarms. Swarm Intell 5(2):73–96CrossRefGoogle Scholar
  11. Gomes J, Christensen AL (2013) Generic behaviour similarity measures for evolutionary swarm robotics. In: Blum C, Alba E (eds) Genetic and evolutionary computation conference (GECCO). ACM Press, New York, pp 199–206Google Scholar
  12. Gomes J, Mariano P, Christensen AL (2014a) Avoiding convergence in cooperative coevolution with novelty search. In: Bazzan ALC, Huhns MN, Lomuscio A, Scerri P (eds) International conference on autonomous agents and multiagent systems (AAMAS). IFAAMAS, pp 1149–1156Google Scholar
  13. Gomes J, Mariano P, Christensen AL (2014b) Systematic derivation of behaviour characterisations in evolutionary robotics. In: Sayama H, Rieffel J, Risi S, Doursat R, Lipson H (eds) International conference on the synthesis and simulation of living systems (ALife). MIT Press, Berlin, pp 202–209Google Scholar
  14. Gomes J, Mariano P, Christensen AL (2015a) Cooperative coevolution of morphologically heterogeneous robots. In: Andrews P, Caves L (eds) European conference on artificial life. MIT Press, pp 312–319Google Scholar
  15. Gomes J, Mariano P, Christensen AL (2015b) Cooperative coevolution of partially heterogeneous multiagent systems. In: Weiss G, Yolum P, Bordini RH, Elkind E (eds) International conference on autonomous agents and multiagent systems (AAMAS). IFAAMAS, pp 297–305Google Scholar
  16. Gomes J, Mariano P, Christensen AL (2015c) Devising effective novelty search algorithms: a comprehensive empirical study. In: Silva S, Esparcia-Alcázar AI (eds) Genetic and evolutionary computation conference (GECCO). ACM Press, pp 943–950Google Scholar
  17. Gomes J, Duarte M, Mariano P, Christensen AL (2016a) Cooperative coevolution of control for a real multirobot system. In: Handl J, Hart E (eds) Parallel problem solving from nature – PPSN XIV. Springer, pp 591–601Google Scholar
  18. Gomes J, Mariano P, Christensen AL (2016b) Novelty-driven cooperative coevolution. Evolutionary computation, (in press) Google Scholar
  19. Gomez F, Miikkulainen R (1997) Incremental evolution of complex general behavior. Adapt. Behavior 5(3–4):317–342CrossRefGoogle Scholar
  20. Grabowski R, Navarro-Serment LE, Paredis CJ, Khosla PK (2000) Heterogeneous teams of modular robots for mapping and exploration. Auton Robots 8(3):293–308CrossRefGoogle Scholar
  21. Howard A, Parker LE, Sukhatme GS (2006) Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection. Int J Robot Res 25(5–6):431–447CrossRefGoogle Scholar
  22. Hsieh MA, Cowley A, Keller JF, Chaimowicz L, Grocholsky B, Kumar V, Taylor CJ, Endo Y, Arkin RC, Jung B et al (2007) Adaptive teams of autonomous aerial and ground robots for situational awareness. J Field Robot 24(11–12):991–1014CrossRefGoogle Scholar
  23. Jones EG, Browning B, Dias MB, Argall B, Veloso M, Stentz A (2006) Dynamically formed heterogeneous robot teams performing tightly-coordinated tasks. In: Proceedings 2006 IEEE international conference on robotics and automation (ICRA). IEEE Press, pp 570–575Google Scholar
  24. Jordan MI (1997) Serial order: a parallel distributed processing approach. In: Donahoe JW, Dorsel VP (eds) Neural-network models of cognition biobehavioral foundations, advances in psychology, vol 121. North-Holland, pp 471–495Google Scholar
  25. Kistemaker S, Whiteson S (2011) Critical factors in the performance of novelty search. In: Krasnogor N, Lanzi PL (eds) Genetic and evolutionary computation conference (GECCO). ACM Press, pp 965–972Google Scholar
  26. Knudson M, Tumer K (2010) Coevolution of heterogeneous multi-robot teams. In: Pelikan M, Branke J (eds) Genetic and evolutionary computation conference (GECCO). ACM Press, pp 127–134Google Scholar
  27. Lacroix S, Le Besnerais G (2011) Issues in cooperative air/ground robotic systems. In: Kaneko M, Nakamura Y (eds) Robotics research, Springer tracts in advanced robotics, vol 66. Springer, Berlin, pp 421–432Google Scholar
  28. Lehman J, Stanley KO (2011) Abandoning objectives: evolution through the search for novelty alone. Evol Comput 19(2):189–223CrossRefGoogle Scholar
  29. Mathews N, Christensen AL, O’Grady R, Dorigo M (2010) Cooperation in a heterogeneous robot swarm through spatially targeted communication. In: Dorigo M, Birattari M (eds) Swarm intelligence, LNCS, vol 6234. Springer, Berlin, pp 400–407CrossRefGoogle Scholar
  30. Mouret JB (2011) Novelty-based multiobjectivization. In: Doncieux S, Bredeche N, Mouret JB (eds) New horizons in evolutionary robotics, studies in computation intelligence, vol 341. Springer, Berlin, pp 139–154Google Scholar
  31. Mouret JB, Doncieux S (2008) Incremental evolution of animats behaviors as a multi-objective optimization. In: Asada M, Hallam JCT, Meyer JA, Tani J (eds) From Animals to Animats 10. Springer, Berlin, pp 210–219CrossRefGoogle Scholar
  32. Mouret JB, Doncieux S (2012) Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol Comput 20(1):91–133CrossRefGoogle Scholar
  33. Nelson AL, Barlow GJ, Doitsidis L (2009) Fitness functions in evolutionary robotics: a survey and analysis. Robot Auton Syst 57(4):345–370CrossRefGoogle Scholar
  34. Nitschke GS, Schut MC, Eiben AE (2009) Collective neuro-evolution for evolving specialized sensor resolutions in a multi-rover task. Evol Intell 3(1):13–29CrossRefGoogle Scholar
  35. Nitschke GS, Eiben AE, Schut MC (2012a) Evolving team behaviors with specialization. Genet Program Evol Mach 13(4):493–536CrossRefGoogle Scholar
  36. Nitschke GS, Schut MC, Eiben AE (2012b) Evolving behavioral specialization in robot teams to solve a collective construction task. Swarm Evol Comput 2:25–38CrossRefGoogle Scholar
  37. Nolfi S, Floreano D (2000) Evolutionary robotics. MIT Press, CambridgeGoogle Scholar
  38. Panait L (2010) Theoretical convergence guarantees for cooperative coevolutionary algorithms. Evol Comput 18(4):581–615CrossRefGoogle Scholar
  39. Parker L, Kannan B, Tang F, Bailey M (2004) Tightly-coupled navigation assistance in heterogeneous multi-robot teams. In: IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE Press, pp 1016–1022Google Scholar
  40. Popovici E, De Jong K (2006) The dynamics of the best individuals in co-evolution. Nat Comput 5(3):229–255MathSciNetzbMATHCrossRefGoogle Scholar
  41. Potter MA, Jong KAD (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8(1):1–29CrossRefGoogle Scholar
  42. Potter MA, Meeden LA, Schultz AC (2001) Heterogeneity in the coevolved behaviors of mobile robots: the emergence of specialists. In: Nebel B (ed) International joint conference on artificial intelligence (IJCAI). Morgan Kaufmann, San Francisco, pp 1337–1343Google Scholar
  43. Stanley K, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127CrossRefGoogle Scholar
  44. Trianni V, López-Ibáñez M (2015) Advantages of task-specific multi-objective optimisation in evolutionary robotics. PLoS one 10(8):e0136406CrossRefGoogle Scholar
  45. Uchibe E, Asada M (2006) Incremental coevolution with competitive and cooperative tasks in a multirobot environment. Proc IEEE 94(7):1412–1424CrossRefGoogle Scholar
  46. Uchibe E, Nakamura M, Asada M (1998) Co-evolution for cooperative behavior acquisition in a multiple mobile robot environment. In: IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE Press, pp 425–430Google Scholar
  47. Vanneschi L, Mauri G, Valsecchi A, Cagnoni S (2006) Heterogeneous cooperative coevolution: strategies of integration between GP and GA. In: Keijzer M, Cattolico M (eds) Genetic and evolutionary computation conference (GECCO). ACM Press, pp 361–368Google Scholar
  48. Wiegand RP (2003) An analysis of cooperative coevolutionary algorithms. PhD thesis, George Mason UniversityGoogle Scholar
  49. Wiegand RP, Liles WC, De Jong KA (2001) An empirical analysis of collaboration methods in cooperative coevolutionary algorithms. In: Spector L, Goodman ED (eds) Genetic and evolutionary computation conference (GECCO). ACM Press, pp 1235–1245Google Scholar
  50. Yang J, Liu Y, Wu Z, Yao M (2012) The evolution of cooperative behaviours in physically heterogeneous multi-robot systems. Int J Adv Robot Syst 9(253):1–10Google Scholar
  51. Yong CH, Miikkulainen R (2009) Coevolution of role-based cooperation in multiagent systems. IEEE Trans Auton Mental Dev 1(3):170–186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.BioMachines LabLisbonPortugal
  2. 2.Instituto de TelecomunicaçõesLisbonPortugal
  3. 3.BioISI, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  4. 4.Instituto Universitário de Lisboa (ISCTE-IUL)LisbonPortugal

Personalised recommendations