Skip to main content

Local structure approximation as a predictor of second-order phase transitions in asynchronous cellular automata

Abstract

The mathematical analysis of the second-order phase transitions that occur in α-asynchronous cellular automata field is a highly challenging task. From the experimental side, these phenomena appear as a qualitative change of behaviour which separates a behaviour with an active phase, where the system evolves in a stationary state with fluctuations, from a passive state, where the system is absorbed in a homogeneous fixed state. The transition between the two phases is abrupt: we ask how to analyse this change and how to predict the critical value of the synchrony rate α. We show that an extension of the mean-field approximation, called the local structure theory, can be used to predict the existence of second-order phase transitions belonging to the directed percolation university class. The change of behaviour is related to the existence of a transcritical bifurcation in the local structure maps. We show that for a proper setting of the approximation, the form of the transition is predicted correctly and, more importantly, an increase in the level of local structure approximation allows one to gain precision on the value of the critical synchrony rate which separates the two phases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. The results of this paper were obtained with Maple.

  2. Numerical values are given with a precision of \(10^{-4}\) to compare with the experimental values which are obtained with Monte-Carlo simulations (see below).

References

  • Alligood K, Sauer T, Yorke J (1997) Chaos: an introduction to dynamical systems. Springer, Berlin

    Book  Google Scholar 

  • Bersini H, Detours V (1994) Asynchrony induces stability in cellular automata based models. In: Brooks RA, Maes P (eds) Proceedings of the 4th international workshop on the synthesis and simulation of living systems Artificial Life IV. MIT Press, Cambridge, pp 382–387

    Google Scholar 

  • Brascamp HJ (1971) Equilibrium states for a one dimensional lattice gas. Commun Math Phys 21(1):56

    Article  MathSciNet  Google Scholar 

  • Dennunzio A, Formenti E, Manzoni L, Mauri G (2013) m-Asynchronous cellular automata: from fairness to quasi-fairness. Nat Comput 12(4):561–572

    Article  MathSciNet  Google Scholar 

  • Fannes M, Verbeure A (1984) On solvable models in classical lattice systems. Commun Math Phys 96:115–124

    Article  MATH  MathSciNet  Google Scholar 

  • Fatès N (2009) Asynchronism induces second order phase transitions in elementary cellular automata. J Cell Autom 4(1):21–38

    MATH  MathSciNet  Google Scholar 

  • Fatès N (2014) A guided tour of asynchronous cellular automata. J Cell Autom 9:387–416. https://hal.inria.fr/hal-00908373

  • Fatès N, Morvan M (2005) An experimental study of robustness to asynchronism for elementary cellular automata. Complex Syst 16:1–27

    Google Scholar 

  • Fukś H (2012) Construction of local structure maps for cellular automata. J Cell Autom 7:455–488

    MATH  MathSciNet  Google Scholar 

  • Grilo C, Correia L (2011) Effects of asynchronism on evolutionary games. J Theor Biol 269(1):109–122. doi:10.1016/j.jtbi.2010.10.022

    Article  MATH  MathSciNet  Google Scholar 

  • Gutowitz HA, Victor JD (1987) Local structure theory in more than one dimension. Complex Syst 1:57–68

    MATH  MathSciNet  Google Scholar 

  • Gutowitz HA, Victor JD, Knight BW (1987) Local structure theory for cellular automata. Phys D 28:18–48

    Article  MATH  MathSciNet  Google Scholar 

  • Mairesse J, Marcovici I (2014) Around probabilistic cellular automata. Theor Comput Sci 559:42–72. doi:10.1016/j.tcs.2014.09.009

    Article  MATH  MathSciNet  Google Scholar 

  • Mendonça JRG, de Oliveira MJ (2011) An extinction-survival-type phase transition in the probabilistic cellular automaton p 182–q 200. J Phys A 44(15). Art. no. 155001

  • Regnault D (2013) Proof of a phase transition in probabilistic cellular automata. In: Béal M, Carton O (eds) Proceedings of developments in language theory, lecture notes in computer science, vol 7907, pp 433–444

  • Taggi L (2015) Critical probabilities and convergence time of percolation probabilistic cellular automata. J Stat Phys 159(4):853–892. doi:10.1007/s10955-015-1199-8

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

H. Fukś acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) in the form of Discovery Grant. This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Fukś.

Appendix

Appendix

Definitions of polynomials d x , d y , d z and d v for local structure equations for rule 6:

$$\begin{aligned} d_x&= ( x+y ) ( v+y )\left( 3 {v}^{2}+vx-zv-v+8 yv+yx-y\right.\\&\quad\left. -\,2 zy+5 {y}^{2} \right) {\alpha }^{3}- ( v+y-z) \left( 3 {v}^{2}x+3 y{v}^{2}-vxz +3 {y}^{2}v\right. \\&\quad\left. -\,zvy+4 yvx+x{y}^{2}\right) {\alpha }^{2}- ( v+y ) y \left( 2 yv+vx+2 {y}^{2}\right. \\&\quad\left. -\,2 z y+yx-2 xz \right) \alpha -x (v+y)^{2} ( x+y ) \\ d_y&= ( x+y ) ( v+y ) \left( 3 {v}^{2}+vx-zv\right. -v+8 yv+yx-y-2 zy\\&\left.\quad +\,5{y}^{2} \right) {\alpha }^{3}+ \left( 6 zvxy-17 vx{y}^{2} \right. -16 {v}^{2}xy+2 yvx+4 {v}^{2}xz\\&\quad+\,4z{v}^{2}y+2 zx{y}^{2}-2 v{x}^{2}y+5 {y}^{2}zv-{z}^{2}vx-yv{z}^{2} -13 {y}^{3}v\\&\quad-\,14 {v}^{2}{y}^{2}-6 x{y}^{3}-{v}^{2}{x}^{2}+{y}^{3}-{x}^{2}{y}^{2}-4 {y}^{4}-5 y{v}^{3 }+y{v}^{2}\\&\quad+\,{v}^{2}x+{y}^{3}z+2 {y}^{2}v+x{y}^{2}\left. -5 {v}^{3}x \right) {\alpha }^{2}+ ( v+y )\left( 2 y{v}^{2}\right. \\&\quad+\,2 {v}^{2}x+2 yvx-2 vxz-2zvy\left. +{y}^{2}v-{y}^{3} \right) \alpha +y ( v+y )^{2} ( x+y ) \\ d_z&= ( 3 {v}^{2}+vx-zv-v+8 yv+yx-y-2 zy+5 {y}^{2} ){\alpha }^{3}- ( v+y )\\&\quad\;\; ( 5 v-3 z+x-1+6 y ) {\alpha }^{2}+ ( 2 {y}^{2}+2 {v}^{2}\\&\quad-\,3 zy-2 zv+4 yv ) \alpha +z ( v+y ) \\ d_v&= ( x+y ) ( v+y ) \left( 3 {v}^{2}+vx-zv\right. -v+8 yv+yx-y-2 zy\\&\left.\quad +\,5 {y}^{2} \right) {\alpha }^{3}+ \left( 7 zvxy-29 vx{y}^{2} \right. -25 {v}^{2}xy+4 yvx+4 {v}^{2}xz\\&\quad+\,4z{v}^{2}y+3 zx{y}^{2}-4 v{x}^{ 2}y+6 {y}^{2}zv-{z}^{2}vx-yv{z}^{2} \\&\quad-\,23 {y}^{3}v-22 {v}^{2}{y}^{2}- 11 x{y}^{3}-2 {v}^{2}{x}^{2}+2 {y}^{3}-2 {x}^{2}{y}^{2}-8 {y}^{4}\\&\quad-\,7 y{v}^{3}+2 y{v}^{2}+2 {v}^{2}x+2 {y}^{3}z\left. +4{y}^{2}v+2 x{y}^{2}-7 {v}^{3}x \right) {\alpha }^{2}\\&\quad+\,( v+y ) ( 5 y{v}^{2} +5 {v}^{2}x+v{x}^{2}-3 zvy+10 yvx\\&\quad+\,8{y}^{2}v-vx-yv-3 vxz-{y}^{2}- {y}^{2}z+3 {y}^{3}+5 x{y}^{2}\\&\quad+\,{x}^{2}y-zxy-yx )\alpha-v ( v+y )^{2} ( x+y ) \end{aligned}$$

Definitions of A 1 and A 2 for Eq. (30):

$$\begin{aligned} A_1&= (2 {\alpha }-3) (32 {\alpha }^{14}+1776 {\alpha }^{13}-32304 {\alpha }^{12} +248136 {\alpha }^{11}-1156158 {\alpha }^{10} +3746559 {\alpha }^9-9102790 {\alpha }^8+17374596 {\alpha }^7\\&\quad -26738472 {\alpha }^6 +33372704 {\alpha }^5-33402048 {\alpha }^4+26068992 {\alpha }^3-14802944 {\alpha }^2+5259264 {\alpha }-884736)\\&\quad +12 \sqrt{3\left( 8 {\alpha }^9+56 {\alpha }^8-426 {\alpha }^7+940 {\alpha }^6-821 {\alpha }^5-588 {\alpha }^4+2656 {\alpha }^3-3220 {\alpha }^2+1824 {\alpha }-400\right) }\\&\quad \;\left( 4 {\alpha }^4-20 {\alpha }^3+45 {\alpha }^2-16 {\alpha }-32\right) \left( 4 {\alpha }^6-32 {\alpha }^5+109 {\alpha }^4-214 {\alpha }^3+284 {\alpha }^2-256 {\alpha }+128\right) \\ A_2&=16 {\alpha }^{10}-576 {\alpha }^9+5048 {\alpha }^8-22816 {\alpha }^7+65969 {\alpha }^6-134476 {\alpha }^5\\&\quad +199844 {\alpha }^4-213632 {\alpha }^3+161536 {\alpha }^2-82944 {\alpha }+21504 \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukś, H., Fatès, N. Local structure approximation as a predictor of second-order phase transitions in asynchronous cellular automata. Nat Comput 14, 507–522 (2015). https://doi.org/10.1007/s11047-015-9521-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-015-9521-6

Keywords

  • Cellular automata
  • Phase transitions
  • Critical phenomena

Mathematics Subject Classification

  • 37B15
  • 68Q80
  • 82B26