Skip to main content
Log in

A new approach for solving set covering problem using jumping particle swarm optimization method

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

The set covering problem (SCP) is a well known classic combinatorial NP-hard problem, having practical application in many fields. To optimize the objective function of the SCP, many heuristic, meta heuristic, greedy and approximation approaches have been proposed in the recent years. In the development of swarm intelligence, the particle swarm optimization is a nature inspired optimization technique for continuous problems and for discrete problems we have the well known discrete particle swarm optimization (DPSO) method. Aiming towards the best solution for discrete problems, we have the recent method called jumping particle swarm optimization (JPSO). In this DPSO the improved solution is based on the particles attraction caused by attractor. In this paper, a new approach based on JPSO is proposed to solve the SCP. The proposed approach works in three phases: for selecting attractor, refining the feasible solution given by the attractor in order to reach the optimality and for removing redundancy in the solution. The proposed approach has been tested on the benchmark instances of SCP and compared with best known methods. Computational results show that it produces high quality solution in very short running times when compared to other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aickelin Uwe (2002) An indirect genetic algorithm for set covering problems. J Oper Res Soc 53(10):1118–1126

    Article  MATH  Google Scholar 

  • Aliguliyev RM (2010) Clustering techniques and Discrete particle Swarm Optimization algorithm for Multi-document summarization. Comput Intell 26:420–448

    Article  MathSciNet  MATH  Google Scholar 

  • Al-kazemi B, Mohan CK (2002) Multi-phase discrete particle swarm optimization. In: Fourth international workshop on frontiers in evolutionary algorithms, Kinsale, Ireland

  • Azimi ZN, Toth P, Galli L (2010) An electromagnetism metaheuristic for the unicost set covering problem. Eur J Oper Res 205:290–300

    Article  MathSciNet  MATH  Google Scholar 

  • Balas E, Carrera MC (1996) A dynamic subgradient-based branch-and-bound procedure for set covering. Oper Res 44(6):875–890

    Article  MathSciNet  MATH  Google Scholar 

  • Bautista J, Pereira J (2007) A GRASP algorithm to solve the unicost set covering problem. Comput Oper Res 34:3162–3173

    Article  MathSciNet  MATH  Google Scholar 

  • Beasley JE (1990) A Lagrangian heuristic for set covering problems. Nav Res Logist 37(1):151–164

    Article  MathSciNet  MATH  Google Scholar 

  • Beasley JE, Chu RC (1996) A genetic algorithm for the set covering problem. Eur J Oper Res 94:392–404

    Article  MATH  Google Scholar 

  • Brusco MJ, Jacobs LW, Thompson GM (1999) A morphing procedure to supplement a simulated annealing heuristic for cost and coverage correlated set covering problems. Ann Oper Res 86:611–627

    Article  MathSciNet  MATH  Google Scholar 

  • Caprara A, Toth P, Fischetti M (2000) Algorithms for the set covering problem. Ann Oper Res 98:353–371

    Article  MathSciNet  MATH  Google Scholar 

  • Ceria S, Nobili P, Sassano A (1998) A Lagrangian-based heuristic for large-scale set covering problems. Math Program 81:215–228

    MathSciNet  MATH  Google Scholar 

  • Chen AL, Yang GK, Wu ZM (2006) Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. J Zhejiang Univ Sci A 7(4):607–614

  • Consoli S, Pérez JAM, Dowman KD, Mladenović N (2010) Discrete particle swarm optimization for the minimum labelling steiner tree problem. Nat Comput 9:29–46

    Article  MathSciNet  MATH  Google Scholar 

  • Cormode G, Karloff H, Wirth A (2010) Set cover algorithms for very large datasets. In: ACM CIKM’10

  • Correa ES, Freitas AA, Johnson CG (2006) A new discrete particle swarm algorithm applied to attribute selection in a bioinformatic data set. In: Proceedings of the GECCO, pp 35–42

  • Demśar J (2006) Statistical comparison of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  • Fisher ML, Kedia P (1990) Optimal solution of set covering/partitioning problems using dual heuristics. Manage Sci 36(6):674–688

    Article  MathSciNet  MATH  Google Scholar 

  • Galinier P, Hertz A (2007) Solution techniques for the large set covering problem. Discrete Appl Math 155:312–326

    Article  MathSciNet  MATH  Google Scholar 

  • García FJM, Pérez JAM (2008) Jumping frogs optimization: a new swarm method for discrete optimization, Technical Report DEIOC 3/2008, Department of Statistics, O.R and computing, University of La Laguna, Tenerife, Spain

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco

    MATH  Google Scholar 

  • Grossman T, Wool A (1997) Computational experience with approximation algorithms for the set covering problem. Eur J Oper Res 101:81–92

    Article  MATH  Google Scholar 

  • Gutiérrez JPC, Silva DL, Pérez JAM (2008) Exploring feasible and infeasible regions in the vehicle routing problem with time windows using a multi-objective particle swarm optimization approach. In: Proceedings of the international workshop on nature inspired cooperatives strategies for optimization, NICSO

  • Housos E, Elmoth T (1997) Automatic optimization of subproblems in scheduling airlines crews. Interfaces 27(5):68–77

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the 4th IEEE international conference on neural networks, Perth, Australia, pp 1942–1948

  • Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm. IEEE Conf Syst Man Cybern 5:4104–4108

    Google Scholar 

  • Lan G, DePuy GW, Whitehouse GE (2007) An effective and simple heuristic for the set covering problem. Eur J Oper Res 176:1387–1403

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Cai Z (2012) Gravity-based heuristic for set covering problems and its application in fault diagnosis. J Syst Eng Electron 23:391–398

    Article  MathSciNet  Google Scholar 

  • Li J, Kwan RSK (2004) A meta-heuristic with orthogonal experiment for the set covering problem. J Math Model Algorithms 3:263–283

    Article  MathSciNet  MATH  Google Scholar 

  • Liaoa C-J, Tseng C-T, Luarn P (2007) A discrete version of particle swarm optimization for flowshop scheduling problems. Comput Oper Res 34:3099–3111

    Article  MATH  Google Scholar 

  • Martinoli PJA (2006) Discrete multi-valued particle swarm optimization. Proc IEEE Swarm Intell Symp 1:103–110

    Google Scholar 

  • Moirangthem J, Dash SS, Ramas R (2012) Determination of minimum break point set using paricle swarm optimization for system-wide protective relay setting and coordination. Eur Trans Electr Power 22:1126–1135

    Article  Google Scholar 

  • Ohlsson M, Peterson C, Soderberg B (2001) An efficient mean field approach to the set covering problem. Eur J Oper Res 133:583–595

    Article  MathSciNet  MATH  Google Scholar 

  • Pan Q-K, Tasgetiren MF, Liang Y-C (2008) A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput Oper Res 35:2807–2839

    Article  MathSciNet  MATH  Google Scholar 

  • Pardalos PM et al (2006) Experimental analysis of approximation algorithms for the vertex cover and set covering problems. Comput Oper Res 33:3520–3534

    Article  MATH  Google Scholar 

  • Qiang L, Na QX, Shi-rang L (2009) A discrete particle swarm optimization algorithm with fully communicated information, ACM GEC, pp 393–400

  • Raja Balachandar S, Kannan K (2010) A meta-heuristic algorithm for set covering problem based on gravity. WASET 43:504–509

    Google Scholar 

  • Ren Z-G, Feng Z-R, Ke L-J, Zhang Z-J (2010) New ideas for applying ant colony optimization to the set covering problem. Comput Ind Eng 58:774–784

    Article  Google Scholar 

  • Saxena A, Goyal V, Lejeune MA (2010) MIP reformulations of the probabilistic set covering problem. Math Program Ser A 121:1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Sherbaz AA, Kuseler T, Adams C, Marsalek R, Povalac K (2010) WiMAX parameters adaptation through a baseband processor using discrete particle swarm method. Int J Microw Wirel Technol 2(2):165–171

    Article  Google Scholar 

  • Shi XH, Liang YC, Lee HP, Lu C, Wang QX (2007) Particle swarm optimization-based algorithms for TSP and generalized TSP. Inf Process Lett 103:169–176

    Article  MathSciNet  MATH  Google Scholar 

  • Solar M, Parada V, Urrutia R (2002) A parallel genetic algorithm to solve the set-covering problem. Comput Oper Res 29:1221–1235

    Article  MathSciNet  MATH  Google Scholar 

  • Stützle T, Hoos HH (2000) Max–min ant system. Future Gener Comput Syst 16:889–914

    Article  MATH  Google Scholar 

  • Tasgetiren MF, Suganthan PN, Pan Q-K (2007) A discrete particle swarm optimization algorithm for the generalized traveling salesman problem. In: Proceedings of the GECCO, London, pp 158–165

  • Telelis OA, Zissimopoulos V (2005) Absolute O(logm) error in approximating random set covering: an average case analysis. Inf Process Lett 94:171–177

    Article  MathSciNet  MATH  Google Scholar 

  • Toregas C, Swain R, ReVelle C, Bergman L (1971) The location of emergency service facilities. Oper Res Int J 19:1363–1373

    MATH  Google Scholar 

  • Vasko FJ, Wilson GR (1984) Using a facility location algorithm to solve large set covering problems. Oper Res Lett 3(2):85–90

    Article  MATH  Google Scholar 

  • Vasko FJ, Wolf FE (1987) Optimal selection of ingot sizes via set covering. Oper Res 35(3):346–353

    Article  Google Scholar 

  • Whitehouse GE, DePuy GW, Moraga RJ (2002) Meta-RaPS approach for solving the resource allocation problem. In: Proceedings of the 2002 world automation congress, Orlando, FL

  • Wolsey LA (1998) Lagrangian duality. In: Wolsey (ed) Integer programming. Wiley, New York, pp 167–181

  • Hollander M, Wolfe DA (1973) Nonparametric statistical methods, 2nd ed. Wiley, New York

  • Nemenyi PB (1963) Distribution free multiple comparisons, Ph.D. thesis. Princeton University, New Jersey

  • Secrest BR (2001) Traveling salesman problem for surveillance mission using Particle Swarm Optimization, Master’s Thesis, School of Engineering and Management of the Air Force institute of Technology

  • Yagiura M, Kishida M, Ibaraki T (2006) A 3-flip neighborhood local search for the set covering problem. Eur J Oper Res 172:472–499

    Article  MathSciNet  MATH  Google Scholar 

  • Yang S, Wang M, Jiao L (2004) A quantum particle swarm optimization. In: Proceedings of the CEC2004, the congress on evolutionary computing, vol 1, pp 320–324

  • Zhan Z-H, Zhang J, Du K, Xiao J (2012) Extended binary particle swarm optimization approach for disjoint set covers problem wireless sensor networks. IEEE Conf Technol Appl Artif Intell 13228691:327–331

    Google Scholar 

  • Zhang C, Sun J, Wang Y, Yang Q (2007) An improved discrete particle swarm optimization algorithm for TSP, IEEE/WIC/ACM international conferences on web intelligence and intelligent agent technology—workshops, pp 35–38

  • Zhang H, Sun J, Liu J (2007) A new simplification method for terrain model using discrete particle swarm optimization. In: Proceedings of the 15th international symposium on advances in geographic information systems ACM GIS, pp 1–4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, S., Revathi, N. A new approach for solving set covering problem using jumping particle swarm optimization method. Nat Comput 15, 503–517 (2016). https://doi.org/10.1007/s11047-015-9509-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-015-9509-2

Keywords

Navigation