Natural Computing

, Volume 15, Issue 2, pp 197–214 | Cite as

Emulating cellular automata in chemical reaction–diffusion networks

Article

Abstract

Chemical reactions and diffusion can produce a wide variety of static or transient spatial patterns in the concentrations of chemical species. Little is known, however, about what dynamical patterns of concentrations can be reliably programmed into such reaction–diffusion systems. Here we show that given simple, periodic inputs, chemical reactions and diffusion can reliably emulate the dynamics of a deterministic cellular automaton, and can therefore be programmed to produce a wide range of complex, discrete dynamics. We describe a modular reaction–diffusion program that orchestrates each of the fundamental operations of a cellular automaton: storage of cell state, communication between neighboring cells, and calculation of cells’ subsequent states. Starting from a pattern that encodes an automaton’s initial state, the concentration of a “state” species evolves in space and time according to the automaton’s specified rules. To show that the reaction–diffusion program we describe produces the target dynamics, we simulate the reaction–diffusion network for two simple one-dimensional cellular automata using coupled partial differential equations. Reaction–diffusion based cellular automata could potentially be built in vitro using networks of DNA molecules that interact via branch migration processes and could in principle perform universal computation, storing their state as a pattern of molecular concentrations, or deliver spatiotemporal instructions encoded in concentrations to direct the behavior of intelligent materials.

Keywords

Reaction–diffusion Cellular automata DNA strand displacement Chemical reaction network Intelligent materials Molecular programming Programmable matter Distributed computation 

References

  1. Allen PB, Chen X, Ellington AD (2012) Spatial control of DNA reaction networks by DNA sequence. Molecules 17:13390–13402CrossRefGoogle Scholar
  2. Baker MD, Wolanin PM, Stock JB (2006) Signal transduction in bacterial chemotaxis. Bioessays 28(1):9–22CrossRefGoogle Scholar
  3. Bánsági T, Vanag VK, Epstein IR (2011) Tomography of reaction–diffusion microemulsions reveals three-dimensional Turing patterns. Science 331(6022):1309–1312MathSciNetCrossRefMATHGoogle Scholar
  4. Chen Y, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik D, Seelig G (2013) Programmable chemical controllers made from DNA. Nat Nanotechnol 8(10):755–762CrossRefGoogle Scholar
  5. Chirieleison SM, Allen PB, Simpson ZB, Ellington AD, Chen X (2013) Pattern transformation with DNA circuits. Nat Chem 5:1000–1005CrossRefGoogle Scholar
  6. Codd EF (1968) Cellular automata. Academic Press Inc, San DiegoMATHGoogle Scholar
  7. Codon A, Kirkpatrick B, Maňuch J (2012) Reachability bounds for chemical reaction networks and strand displacement systems. DNA Computing and Molecular Programming. Springer, Heidelberg, BerlinGoogle Scholar
  8. Cook M (2004) Universality in elementary cellular automata. Complex Syst 15(1):1–40MathSciNetMATHGoogle Scholar
  9. Dalchau N, Seelig G, Phillips A (2014) Computational design of reaction–diffusion patterns using DNA-based chemical reaction networks. DNA computing and molecular programming. Springer, Heidelberg, BerlinMATHGoogle Scholar
  10. Danino T, Mondragn-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463(7279):326–330CrossRefGoogle Scholar
  11. Doty D (2014) Timing in chemical reaction networks. In: Proceedings of the 25th ACM-SIAM symposium on discrete algorithms, pp 772–784Google Scholar
  12. Du Y, Lo E, Ali S, Khademhosseini A (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. In; Proceedings of the National Academy of Sciences 105(28):9522–9527Google Scholar
  13. Fujibayashi K, Hariadi R, Park SH, Winfree E, Murata S (2007) Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett 8(7):1791–1797CrossRefGoogle Scholar
  14. Gács P (2001) Reliable cellular automata with self-organization. J Stat Phys 103(1/2):45–267MathSciNetCrossRefMATHGoogle Scholar
  15. Gács P, Reif J (1988) A simple three-dimensional real-time reliable cellular array. J Comput Syst Sci 36(2):125–147MathSciNetCrossRefMATHGoogle Scholar
  16. Lakin M, Phillips A, Stefanovic D (2013) Modular verification of DNA strand displacement networks via serializability analysis. DNA computing and molecular programming. Springer, Heidelberg, BerlinMATHGoogle Scholar
  17. Greenfield D, McEvoy AL, Shroff H, Crooks GE, Wingreen NS, Betzig E, Liphardt J (2009) Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol. 7(6)Google Scholar
  18. Langton CG (1984) Self-reproduction in cellular automata. Phys D 10(1):135–144MathSciNetCrossRefMATHGoogle Scholar
  19. Lindenmayer A (1968) Mathematical models for cellular interactions in development I. filaments with one-sided inputs. J Theor Biol 18(3):280–299CrossRefGoogle Scholar
  20. Lukacs G, Haggie P, Seksek O, Lechardeur D, Verkman NFA (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275(1625)Google Scholar
  21. Montagne K, Plasson R, Sakai Y, Fujii T, Rondelez Y (2011) Programming an in vitro DNA oscillator using a molecular networking strategy. Mol Sys Biol 7(1)Google Scholar
  22. Murray JD (2003) Mathematical biology II: spatial models and biomedical applications, 3rd edn. Springer, New YorkMATHGoogle Scholar
  23. Neary T, Woods D (2006) P-completeness of cellular automaton rule 110. LNCS 4051(132–143)Google Scholar
  24. Nehaniv CL (2004) Asynchronous automata networks can emulate any synchronous automata network. Int J Algebra Comput 14(05):719–739MathSciNetCrossRefMATHGoogle Scholar
  25. von Neumann J, Burks AW (1966) The theory of self-reproducing automata. University of Illinois Press, UrbanaGoogle Scholar
  26. Qian L, Soloveichik D, Winfree E (2011) Efficient turing-universal computation with DNA polymers. DNA computing and molecular programming pp 123–140Google Scholar
  27. Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement. Science 332(6034):1196–1201CrossRefGoogle Scholar
  28. Qian L, Winfree E (2011) A simple DNA gate motif for synthesizing large-scale circuits. J R Soc Interface 8(62):1281–1297CrossRefGoogle Scholar
  29. Qian L, Winfree E (2014) Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface. DNA computing and molecular programming. Springer, Heidelberg, BerlinMATHGoogle Scholar
  30. Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):e424CrossRefGoogle Scholar
  31. Ruiza SA, Chen CS (2007) Microcontact printing: a tool to pattern. Soft Matter 3:168–177CrossRefGoogle Scholar
  32. Sayama H (1999) A new structurally dissolvable self-reproducing loop evolving in a simple cellular automata space. Artif Life 5(4):343–365CrossRefGoogle Scholar
  33. Scalise D, Schulman R (2014) Designing modular reaction–diffusion programs for complex pattern formation. Technology 2(01):55–66CrossRefGoogle Scholar
  34. Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588CrossRefGoogle Scholar
  35. Smith DE, Perkins TT, Chu S (1996) Dynamical scaling of DNA diffusion coefficients. Macromolecules 29(4):1372–1373CrossRefGoogle Scholar
  36. Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with finite stochastic chemical reaction networks. Nat Comput 7(4):615–633MathSciNetCrossRefMATHGoogle Scholar
  37. Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. In: Proceedings of the National Academy of Sciences 107(12):5393–5398Google Scholar
  38. Steinbock O, Kettunen P, Showalter K (1996) Chemical wave logic gates. J Phys Chem 100(49):18970–18975CrossRefGoogle Scholar
  39. Stellwagen E, Lu Y, Stellwagen N (2003) Unified description of electrophoresis and diffusion for DNA and other polyions. Biochemistry 42:11745CrossRefGoogle Scholar
  40. Tomita K, Kurokawa H, Murata S (2002) Graph automata: natural expression of self-reproduction. Phys D: Nonlin Phenom 171(4):197–210MathSciNetCrossRefMATHGoogle Scholar
  41. Tóth Ágota, Showalter K (1995) Logic gates in excitable media. J Chem Phys 103(6):2058–2066CrossRefGoogle Scholar
  42. Turing AM (1952) The chemical basis of morphogenesis. Phil T R Soc B 237:37–72CrossRefGoogle Scholar
  43. Wu A, Rosenfeld A (1979) Cellular graph automata. I. basic concepts, graph property measurement, closure properties. Inf Control 42(3):305–329MathSciNetCrossRefMATHGoogle Scholar
  44. Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131(47):17303–17314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Computer ScienceJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations