Skip to main content

A review of morphogenetic engineering

Abstract

Generally, phenomena of spontaneous pattern formation are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems (CS) that are both architectured and self-organized. Can we understand their precise self-formation capabilities and integrate them with technological planning? Can physical systems be endowed with information, or informational systems be embedded in physics, to create autonomous morphologies and functions? To answer these questions, we have launched in 2009, and developed through a series of workshops and a collective book, a new field of research called morphogenetic engineering. It is the first initiative of its kind to rally and promote models and implementations of complex self-architecturing systems. Particular emphasis is set on the programmability and computational abilities of self-organization, properties that are often underappreciated in CS science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies. [This paper is an extended version of Doursat, Sayama and Michel (2012b) (Chapter 1, in Doursat R et al. (eds.) Morphogenetic engineering: toward programmable complex systems. Understanding complex systems. Springer, 2012a).]

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abelson H, Allen D, Coore D, Hanson C, Homsy G, Knight TF Jr, Nagpal R, Rauch E, Sussman GJ, Weiss R (2000) Amorphous computing. Commun ACM 43(5):74–82

    Article  Google Scholar 

  2. Alonso-Mora J, Breitenmoser A, Rufli M, Siegwart R, Beardsley P (2011) Multi-robot system for artistic pattern formation. In: IEEE international conference on robotics and automation (ICRA), pp 4512–4517

  3. Arbuckle DJ, Requicha AAG (2012) Issues in self-repairing robotic self-assembly. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 141–155

    Chapter  Google Scholar 

  4. Bai L, Breen D (2012) Chemotaxis-inspired cellular primitives for self-organizing shape formation. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 209–237

    Chapter  Google Scholar 

  5. Baldassarre G, Parisi D, Nolfi S (2006) Distributed coordination of simulated robots based on self-organization. Artif Life 12(3):289–311

    Article  Google Scholar 

  6. Ball P (1999) The self-made tapestry. Oxford University Press, Oxford

    MATH  Google Scholar 

  7. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Sci Agric 286(5439):509–512

    MathSciNet  Article  Google Scholar 

  8. Barrat A, Barthélemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  9. Beal J (2005) Programming an amorphous computational medium. In: Unconventional programming paradigms, pp 97–97

  10. Beal J (2012) Functional blueprints: an approach to modularity in grown systems. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 313–329

    Chapter  Google Scholar 

  11. Beal J, Bachrach J (2006) Infrastructure for engineered emergence on sensor/actuator networks. IEEE Intell Syst 21(2):10–19

    Article  Google Scholar 

  12. Beal J, Dulman S, Usbeck K, Viroli M, Correll N (2012) Organizing the aggregate: languages for spatial computing. Comput Res Repos:abs/1202.5509

  13. Bentley P, Kumar S (1999) Three ways to grow designs: a comparison of embryogenies for an evolutionary design problem. In: Proceedings of the genetic and evolutionary computation conference, vol 1. Morgan Kaufmann, San Francisco, pp 35–43

  14. Bhalla N, Bentley PJ (2012) Programming self-assembling systems via physically encoded information. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 157–188

    Chapter  Google Scholar 

  15. Bhalla N, Bentley PJ, Jacob C (2007) Mapping virtual self-assembly rules to physical systems. In: Unconventional Computing, p 167

  16. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  17. Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom 2(1):14–23

    Article  Google Scholar 

  18. Bullock S, Ladley D, Kerby M (2012) Wasps, termites, and waspmites: Distinguishing competence from performance in collective construction. Artif Life 18(3):267–290

    Article  Google Scholar 

  19. Carroll SB (2005) Endless forms most beautiful: the new science of Evo Devo and the making of the animal kingdom. W. W. Norton, New York

    Google Scholar 

  20. Christensen AL, O’Grady R, Dorigo M (2007) Morphology control in a multirobot system. IEEE Robot Autom Mag 14(4):18–25

    Article  Google Scholar 

  21. Coen E (2000) The art of genes. Oxford University Press, Oxford

    Google Scholar 

  22. Coen E, Rolland-Lagan AG, Matthews M, Bangham JA, Prusinkiewicz P (2004) The genetics of geometry. Proc Natl Acad Sci USA 101(14):4728–4735

    Article  Google Scholar 

  23. Coore DN (1999) Botanical computing: a developmental approach to generating interconnect topologies on an amorphous computer. PhD Thesis, MIT

  24. Cussat-Blanc S, Pascalie J, Mazac S, Luga H, Duthen Y (2012) A synthesis of the cell2organ developmental model. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 353–381

    Chapter  Google Scholar 

  25. Detweiler C, Vona M, Yoon Y, Yun S, Rus D (2007) Self-assembling mobile linkages. IEEE Robot Autom Mag 14(4):45–55

    Article  Google Scholar 

  26. Dorigo M, Stützle T (2004) Ant colony optimization. MIT, Cambridge

    Book  MATH  Google Scholar 

  27. Doursat R (2006) The growing canavas of biological development: multiscale pattern generation on an expanding lattice of gene regulatory networks. InterJournal 1809

  28. Doursat R (2008) Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In: Würtz RP (eds) Organic computing, understanding complex systems. Springer, Berlin, pp 167–199

    Google Scholar 

  29. Doursat R (2009) Facilitating evolutionary innovation by developmental modularity and variability. In: Proceedings of the 11th annual conference on genetic and evolutionary computation (GECCO). ACM, New York, pp 683–690

  30. Doursat R, Sayama H, Michel O (eds) (2012a) Morphogenetic engineering: toward programmable complex systems. understanding complex systems. Springer, New York

  31. Doursat R, Sayama H, Michel O (2012b) Morphogenetic engineering: Reconciling self-organization and architecture. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems. Understanding complex systems. Springer, New York, pp 1–25

    Chapter  Google Scholar 

  32. Doursat R, Sánchez C, Dordea R, Fourquet D, Kowaliw T (2012c) Embryomorphic engineering: emergent innovation through evolutionary development. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 275–311

    Chapter  Google Scholar 

  33. Eggenberger P (1997) Evolving morphologies of simulated 3D organisms based on differential gene expression. In: Proceedings of the fourth European conference on artificial life, pp 205–213

  34. Endy D (2005) Foundations for engineering biology. Nat Biotechnol 438(7067):449–453

    Article  Google Scholar 

  35. Giavitto JL, Michel O (2002) The topological structures of membrane computing. Fundam Inf 49(1–3):123–145

    MathSciNet  MATH  Google Scholar 

  36. Giavitto J-L, Godin C, Michel O, Prusinkiewicz P (2002) Modelling and Simulation of biological processes in the context of genomics. In: Computational models for integrative and developmental biology. Hermes

  37. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Biol Cybern 12(1):30–39

    Google Scholar 

  38. Goldstein S, Campbell J, Mowry T (2005) Programmable matter. IEEE Comput Archit Lett 38(6):99–101

    Article  Google Scholar 

  39. Goodwin BC (1994) How the leopard changed its spots: the evolution of complexity. Scribner, New York

    Google Scholar 

  40. Grouchy P, Lipson H (2012) Evolution of self-replicating cube conglomerations in a simulated 3D environment. Artif Life 13:59–66

    Google Scholar 

  41. Hammarlund P, Lisper B (1993) On the relation between functional and data parallel programming languages. In: Proceedings of the conference on functional programming languages and computer architecture. ACM, New York, pp 210–219

  42. Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  43. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT, Cambridge

    Google Scholar 

  44. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79(8):2554–2558

    MathSciNet  Article  Google Scholar 

  45. Hornby GS, Pollack JB (2001) The advantages of generative grammatical encodings for physical design. In: Proceedings of the 2001 congress on evolutionary computation, vol 1, pp 600–607

  46. Jin Y, Meng Y (2011) Morphogenetic robotics: an emerging new field in developmental robotics. IEEE Trans Syst Man Cybern C 41(2):145–160

    Article  Google Scholar 

  47. Jin Y, Meng Y (2012) Morphogenetic robotics: a new paradigm for designing self-organizing, self-reconfigurable and self-adaptive robots. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 61–87

    Chapter  Google Scholar 

  48. Joachimczak M, Wróbel B (2008) Evo-devo in silico: a model of a gene network regulating multicellular development in 3d space with artificial physics. In: Artificial life XI: proceedings of the eleventh international conference on the simulation and synthesis of living systems, pp 297–304

  49. Joachimczak M, Kowaliw T, Doursat R, Wróbel B (2012) Brainless bodies: Controlling the development and behavior of multicellular animats by gene regulation and diffusive signals. In: Artificial life 13: proceedings of the thirteenth international conference on the simulation and synthesis of living systems, pp 349–356

  50. Kauffman SA (1993) The origins of order: self organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  51. Kauffman SA (2008) Reinventing the sacred: a new view of science, reason, and religion. Basic Books, New York

    Google Scholar 

  52. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4. University of Western Australia, Perth, pp 1942–1948

  53. Kephart JO, Chess DM (2003) The vision of autonomic computing. Comput Aided Des 36(1):41–50

    MathSciNet  Article  Google Scholar 

  54. Kernbach S, Meister E, Schlachter F, Jebens K, Szymanski M, Liedke J, Laneri D, Winkler L, Schmickl T, Thenius R et al (2008) Symbiotic robot organisms: replicator and symbrion projects. In: Proceedings of the 8th workshop on performance metrics for intelligent systems. ACM, Gaithersburg, pp 62–69

  55. Knight T (2003) Idempotent vector design for standard assembly of biobricks. Tech. Rep., DTIC Document

  56. Kowaliw T, Banzhaf W (2012) Mechanisms for complex systems engineering through artificial development. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 331–351

    Chapter  Google Scholar 

  57. Kowaliw T, Grogono P, Kharma N (2004) Bluenome: A novel developmental model of artificial morphogenesis. In: Genetic and evolutionary computation GECCO ’04. Springer, Seattle, pp 93–104

  58. Lipson H, Pollack JB (2000) Automatic design and manufacture of robotic lifeforms. Nat Biotechnol 406(6799):974–978

    Article  Google Scholar 

  59. Liu W, Winfield AFT (2012) Distributed autonomous morphogenesis in a self-assembling robotic system. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 89–113

    Chapter  Google Scholar 

  60. Lobo D, Vico FJ (2010) Evolutionary development of tensegrity structures. Biosyst Eng 101(3):167–176

    Article  Google Scholar 

  61. Lobo D, Fernández JD, Vico FJ (2012) Behavior-finding: morphogenetic designs shaped by function. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 441–472

    Chapter  Google Scholar 

  62. Malsburg C (2008) Organic computing. In: Würtz RP (ed) Organic computing, understanding complex systems. In: The organic future of information technology. Springer, New York, pp 7–24

  63. Mamei M, Vasirani M, Zambonelli F (2004) Experiments of morphogenesis in swarms of simple mobile robots. Appl Artif Intell 18(9–10):903–919

    Article  Google Scholar 

  64. Marzano S, Aarts E (2003) The new everyday view on ambient intelligence. Uitgeverij 010 Publishers, Rotterdam

    Google Scholar 

  65. Miller JF, Banzhaf W (2003) Evolving the program for a cell: from french flags to Boolean circuits. In: Kumar S, Bentley P (eds) On growth, form and computers. Academic Press, London, pp 278–301

  66. Minai AA, Braha D, Bar-Yam Y (2006) Complex engineered systems: Science meets technology. In: Braha D, Bar-Yam Y, Minai AA (eds) Complex engineered systems: a new paradigm. Springer, Cambridge, pp 1–21

    Chapter  Google Scholar 

  67. Montagna S, Viroli M (2012) A computational framework for multilevel morphologies. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 383–405

    Chapter  Google Scholar 

  68. Murata S, Yoshida E, Kamimura A, Kurokawa H, Tomita K, Kokaji S (2002) M-tran: self-reconfigurable modular robotic system. IEEE/ASME Trans Mechatron 7(4):431–441

    Article  Google Scholar 

  69. Nagpal R (2001) Programmable self-assembly: constructing global shape using biologically-inspired local interactions and origami mathematics. PhD Thesis, MIT

  70. Nagpal R (2002) Programmable self-assembly using biologically-inspired multiagent control. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems: part 1, ACM, New York, pp 418–425

  71. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582

    Article  Google Scholar 

  72. Nunes de Castro LN (2006) Fundamentals of natural computing: basic concepts, algorithms, and applications. CRC Press, Boca Raton

    Google Scholar 

  73. O’Grady R, Christensen AL, Dorigo M (2012) Swarmorph: morphogenesis with self-assembling robots. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 27–60

    Chapter  Google Scholar 

  74. Pearson JE (1993) Complex patterns in a simple system. Sci Agric 261(5118):189–192

    Article  Google Scholar 

  75. Pfeifer R, Bongard J, Grand S (2006) How the body shapes the way we think: a new view of intelligence. MIT, Cambridge

    Google Scholar 

  76. Prusinkiewicz P, Lindenmayer A (1991) The algorithmic beauty of plants. Springer, New York

    Google Scholar 

  77. Rieffel J, Valero-Cuevas F, Lipson H (2009) Automated discovery and optimization of large irregular tensegrity structures. Comput Struct 87(5):368–379

    Article  Google Scholar 

  78. Rothemund PWK (2006) Folding dna to create nanoscale shapes and patterns. Nat Biotechnol 440(7082):297–302

    Article  Google Scholar 

  79. Rubenstein M, Ahler C, Nagpal R (2012) Kilobot: a low cost scalable robot system for collective behaviors. In: IEEE international Conference on robotics and automation (ICRA), pp 3293–3298

  80. Rus D, Vona M (2000) A physical implementation of the self-reconfiguring crystalline robot. In: Proceedings, ICRA’00, IEEE international conference on robotics and automation, vol 2, pp 1726–1733

  81. Sano K, Sayama H (2006) Wriggraph: a kinetic graph model that uniformly describes ontogeny and motility of artificial creatures. In: Artificial life X: proceedings of the tenth international conference on the simulation and synthesis of living systems, vol 10. MIT, Cambridge, p 77

  82. Sayama H (2007) Generative network automata: a generalized framework for modeling complex dynamical systems with autonomously varying topologies. In: IEEE symposium on artificial life, 2007. ALIFE’07, pp 214–221

  83. Sayama H (2009) Swarm chemistry. Artif Life 15(1):105–114

    Article  Google Scholar 

  84. Sayama H (2011) Seeking open-ended evolution in swarm chemistry. In: IEEE symposium on artificial life (ALIFE), pp 186–193

  85. Sayama H (2012a) Morphologies of self-organizing swarms in 3D swarm chemistry. In: Proceedings of the fourteenth international conference on genetic and evolutionary computation conference. ACM, New York

  86. Sayama H (2012b) Swarm-based morphogenetic artificial life. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 191–208

    Chapter  Google Scholar 

  87. Schramm L, Jin Y, Sendhoff B (2011) Emerged coupling of motor control and morphological development in evolution of multi-cellular animats. In: Advances in artificial life. Darwin meets von Neumann, Budapest, pp 27–34

  88. Sims K (1994) Evolving 3D morphology and behavior by competition. Artif Life 1(4):353–372

    Article  Google Scholar 

  89. Spicher A, Michel O, Giavitto J-L (2010) Declarative mesh subdivision using topological rewriting in MGS. In: International conference on graph transformation, vol 6372. LNCS, The Netherlands, pp 298–313

  90. Spicher A, Michel O, Giavitto J-L (2011) Interaction-based simulations for integrative spatial systems biology. In: Understanding the dynamics of biological systems. Springer, pp 195–231

  91. Spicher A, Michel O, Giavitto J-L (2012) Interaction-based modeling of morphogenesis in MGS. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 409–440

    Chapter  Google Scholar 

  92. Stanley KO, Miikkulainen R (2003) A taxonomy for artificial embryogeny. Artif Life 9(2):93–130

    Article  Google Scholar 

  93. Stepney S, Braunstein SL, Clark JA, Tyrrell A, Adamatzky A, Smith RE, Addis T, Johnson C, Timmis J, Welch P, Milner R, Partridge D (2005) Journeys in non-classical computation I: a grand challenge for computing research. Int J Parallel Emergent Distrib Syst 20(1):5–19

    MathSciNet  Article  Google Scholar 

  94. Tanenbaum AS, van Steen M (2002) Distributed systems: principles and paradigms. Prentice Hall, Upper Saddle River

    Google Scholar 

  95. Tomita K, Kurokawa H, Murata S (2002) Graph automata: natural expression of self-reproduction. Physica D 171(4):197–210

    MathSciNet  Article  MATH  Google Scholar 

  96. Ulieru M, Doursat R (2011) Emergent engineering: a radical paradigm shift. Int J Auton Adapt Commun Syst 4(1):39–60

    Article  Google Scholar 

  97. Verdenal A, Combes D, Escobar-Gutiérrez A (2012) Programmable and self-organised processes in plant morphogenesis: the architectural development of ryegrass. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 501–517

    Chapter  Google Scholar 

  98. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226–1229

    Article  Google Scholar 

  99. Virgo N, Fernando C, Bigge B, Husbands P (2012) Evolvable physical self-replicators. Artif Life 18(2):129–142

    Article  MATH  Google Scholar 

  100. von Mammen S, Jacob C (2007) Genetic swarm grammar programming: ecological breeding like a gardener. In: IEEE congress on evolutionary computation, 2007, CEC 2007, pp 851–858

  101. von Mammen S, Phillips D, Davison T, Jamniczky H, Hallgrímsson B, Jacob C (2012) Swarm-based computational development. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 473–499

    Chapter  Google Scholar 

  102. Webster G, Goodwin BC (1996) Form and transformation: generative and relational principles in biology. Cambridge University Press, Cambridge

    Google Scholar 

  103. Weiser M (1993) Some computer science issues in ubiquitous computing. Commun ACM 36(7):75–84

    Article  Google Scholar 

  104. Werfel J (2012) Collective construction with robot swarms. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 115–140

    Chapter  Google Scholar 

  105. Werfel J, Nagpal R (2006) Extended stigmergy in collective construction. IEEE Intell Syst 21(2):20–28

    Article  Google Scholar 

  106. Winfield AFT, Nembrini J (2012) Emergent swarm morphology control of wireless networked mobile robots. In: Doursat R, Sayama H, Michel O (eds) Morphogenetic engineering: toward programmable complex systems, understanding complex systems. Springer, New York, pp 239–271

    Chapter  Google Scholar 

  107. Winfield A, Harper C, Nembrini J (2005) Towards dependable swarms and a new discipline of swarm engineering. In: Swarm robotics, pp 126–142

  108. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25(1):1–47

    Article  Google Scholar 

  109. Würtz RP (2008) Organic computing. Springer, Berlin

    Book  Google Scholar 

  110. Zykov V, Mytilinaios E, Adams B, Lipson H (2005) Self-reproducing machines. Nat Biotechnol 435(7039):163–164

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to René Doursat.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Doursat, R., Sayama, H. & Michel, O. A review of morphogenetic engineering. Nat Comput 12, 517–535 (2013). https://doi.org/10.1007/s11047-013-9398-1

Download citation

Keywords

  • Agent-based modeling
  • Artificial life
  • Collective construction
  • Complex systems
  • Evolutionary development
  • Generative grammars
  • Morphogenesis
  • Self-organization
  • Swarm robotics
  • Systems engineering