Skip to main content

Implausible consequences of superstrong nonlocality


We look at the consequences of so-called ‘superstrong nonlocal correlations’, which are hypothetical violations of Bell/CHSH inequalities that are stronger than quantum mechanics allows while still preventing the possibility of instantaneous communication. It is shown that the existence of maximally superstrong correlated bits implies that all distributed computations can be performed with a trivial amount of communication, i.e. with one bit. If one believes that Nature does not allow such a computational ‘free lunch’, then this result gives a reason why superstrong correlation are indeed not possible.

This is a preview of subscription content, access via your institution.


  1. Aspect A, Dalibard J, Roger G (1982) Experimental test of Bell’s inequalities using time-varying analyzers. Phys Rev Lett 49:1804–1807

    MathSciNet  Article  Google Scholar 

  2. Babai L, Frankl PG, Simon J (1986) Complexity classes in communication complexity theory. In: Proceedings of the 27th IEEE symposium on foundations of computer science. IEEE Computer Society Press, pp 337–347

  3. Bell JS (1964) On the Einstein-Podolsky-Rosen paradox. Physics 1:195–200

    Google Scholar 

  4. Brassard G, Buhrman H, Linden N, Méthot AA, Tapp A, Unger F (2006) A limit on nonlocality in any world in which communication complexity is not trivial. Phys Rev Lett 96(25):250401. arXiv:quant-ph/0508042

    Google Scholar 

  5. Cirel’son BS (1980) Quantum generalizations of Bell’s inequality. Lett Math Phys 4:93–100

    MathSciNet  Article  Google Scholar 

  6. Clauser JF, Horne MA, Shimony A, Holt RA (1969) Proposed experiment to test local hidden-variable theories. Phys Rev Lett 23:880–884

    Article  Google Scholar 

  7. Cleve R, Buhrman H (1997) Substituting quantum entanglement for communication. Phys Rev A 56(2):1201–1204. arXiv:quant-ph/9704026

    Google Scholar 

  8. Cleve R, van Dam W, Nielsen M, Tapp A (1998) Quantum entanglement and the communication complexity of the inner product function. In: Williams CP (ed) Proceedings of the first NASA international conference on quantum computing and quantum communications, vol 1509. Lecture Notes in Computer Science. Springer, pp 71–74. arXiv:quant-ph/9708019

  9. Freedman SJ, Clauser JF (1972) Experimental test of local hidden-variable theories. Phys Rev Lett 28:938–941

    Article  Google Scholar 

  10. Kushilevitz E, Nisan N (1997) Communication complexity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  11. Popescu S, Rohrlich D (1994) Quantum nonlocality as an axiom. Found Phys 24(3):379–385

    MathSciNet  Article  Google Scholar 

  12. Popescu S, Rohrlich D (1997) The relativistic EPR argument. Potentiality, entanglement and passion-at-a-distance: quantum mechanical studies for Abner Shimony, vol 2. In: Cohen RS, Horne M, Stachel JJ (eds) Boston studies in the philosophy of science, vol. 194. Kluwer Academic Publishers. arXiv:quant-ph/9605004

  13. Rohrlich D, Popescu S (1996) Nonlocality as an axiom for quantum theory. In: Mann A, Revzen M (eds) The dilemma of Einstein, Podolsky and Rosen, 60 years later: international symposium in honour of Nathan Rosen. Annals of the Israel Physical Society, vol. 12. Israel Physical Society. arXiv:quant-ph/9508009

  14. van Dam W (2000) Nonlocality and communication complexity, Chap. 9. Ph.D. Thesis, University of Oxford

Download references

Author information



Corresponding author

Correspondence to Wim van Dam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Dam, W. Implausible consequences of superstrong nonlocality. Nat Comput 12, 9–12 (2013).

Download citation


  • Nonlocality
  • Communication complexity
  • Quantum information theory
  • Foundations of quantum mechanics