Skip to main content

Advertisement

Log in

Evolutionary high-dimensional QoS optimization for safety-critical utility communication networks

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

This paper proposes and evaluates an evolutionary multiobjective optimization algorithm, called EVOLT, which heuristically optimizes quality of service (QoS) parameters in communication networks. EVOLT uses a population of individuals, each of which represents a set of QoS parameters, and evolves the individuals via genetic operators such as crossover, mutation and selection for satisfying given QoS requirements. For evaluating EVOLT in real-world settings that have high-dimensional parameter and optimization objective spaces, this paper focuses on QoS optimization in safety-critical communication networks for electric power utilities. Simulation results show that EVOLT outperforms a well-known existing evolutionary algorithm for multiobjective optimization and efficiently obtains quality QoS parameters with acceptable computational costs. Moreover, EVOLT visualizes obtained QoS parameters in a self-organizing map in order to aid network administrators to intuitively understand the QoS parameters and the tradeoffs among optimization objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. In the research field of multiobjective optimization, an objective space is considered high-dimensional when it has more than three objectives (Ishibuchi et al. 2008).

  2. http://jns.sourceforge.net/.

  3. http://www.isi.edu/nsnam/ns/.

  4. SOM is an unsupervised classifier that classifies high-dimensional data in a low-dimensional space (Kohonen 1998).

References

  • Abdel-Magid YL, Abido MA (2003) Optimal multiobjective design of robust power system stabilizers using GA. IEEE Trans Power Syst 18(3):1125–1132

    Article  Google Scholar 

  • Abdelzaher TF, Shin KG (1998) End-host architecture for QoS-adaptive communication. In: Proceedings of IEEE symposium on real-time technology and applications, pp 121–130

  • Andersson G, Donalek P, Farmer R, Hatziargyriou N, Kamwa I, Kundur P, Martins N, Paserba J, Pourbeik P, Sanchez-Gasca J et al (2005) Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance. IEEE Trans Power Syst 20(4):1922–1928

    Article  Google Scholar 

  • Barolli L, Koyama A, Shiratori N (2003) A QoS routing method for ad-hoc networks based on genetic algorithm. In: Proceedings of international workshop on database and expert systems applications, pp 175–179

  • Beaty HW (1998) Electric power distribution systems: a nontechnical guide. PennWell Books, Tulsa

    Google Scholar 

  • Champrasert P, Suzuki J, Otani T (2009) Constraint-based evolutionary QoS adaptation for power utility communication networks. In: Proceedings of IEEE international conference on tools with artificial intelligence, pp 395–403

  • Chen S, Nahrstedt K (1998) An overview of quality of service routing for next-generation high-speed networks: problems and solutions. IEEE Netw 12(6):64–79

    Article  Google Scholar 

  • Clune J, Goings S, Punch B, Goodman E (2005) Investigations in meta-GAs: panaceas or pipe dreams? In: Proceedings of ACM conference on genetic and evolutionary computation, pp 235–241

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Diao Y, Hellerstein JL, Parekh S (2002) Optimizing quality of service using fuzzy control. In: Proceedings of IFIP/IEEE international workshop on distributed systems: operations and management: management technologies for E-commerce and E-business applications, pp 42–53

  • Diao Y, Gandhi N, Hellerstein JL, Parekh S, Tilbury DM (2002) Using MIMO feedback control to enforce policies for interrelated metrics with application to the Apache web server. In: Proceedings of IEEE/IFIP network operations and management symposium, pp 219–234

  • Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, Berlin

    MATH  Google Scholar 

  • Eiben AE, Michalewicz Z, Schoenauer M, Smith J (2007) Parameter control in evolutionary algorithms. In: Lobo FG, Lima CF, Michalewicz Z (eds) Studies in computational intelligence, vol 54. Springer, Berlin, pp 19–46

  • Finch JW, Besmi MR (1995) Genetic algorithms applied to a power system stabilizer. In: Proceedings of IEEE international conference on genetic algorithms in engineering systems: innovations and applications, pp 100–105

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading

    MATH  Google Scholar 

  • Haghighat AT, Faez K, Dehghan M, Mowlaei A, Ghahremani Y (2003) GA-based heuristic algorithms for QoS based multicast routing. Knowl Based Syst 16(5–6):305–312

    Article  Google Scholar 

  • Harik GR, Lobo FG (1999) A parameter-less genetic algorithm. In: Proceedings of ACM conference on genetic and evolutionary computation, pp 258–265

  • Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  • IEEE Computer Society (2004) 802.1D: IEEE standard for local and metropolitan area networks: media access control (MAC) Bridges. IEEE Computer Society, New York

  • Ishibuchi H, Tsukamoto N, Hitotsuyanagi Y, Nojima Y (2008) Effectiveness of scalability improvement attempts on the performance of NSGA-II for many-objective problems. In: Proceedings of ACM conference on genetic and evolutionary computation, pp 649–656

  • Khare V, Yao X, Deb K (2003) Performance scaling of multi-objective evolutionary algorithms. In: Proceedings of international conference on evolutionary multi-criterion optimization, pp 376–390

  • Kohonen T (1998) The self-organizing map. Neurocomputing 21(1–3):1–6

    Article  MATH  Google Scholar 

  • Koyama A, Beralli L, Matsumoto K, Apduhan BO (2004) A GA-based multi-purpose optimization algorithms for QoS routing. In: Proceedings of IEEE international conference on advanced information networking and applications, pp 23–28

  • Lansberry JE, Wozniak L (1994) Adaptive hydrogenerator governor tuning with a genetic algorithm. IEEE Trans Energy Convers 9(1):179–185

    Article  Google Scholar 

  • Liu Z, Squillante MS, Wolf JL (2001) On maximizing service level agreement profits. In: Proceedings of ACM conference on electronic commerce, pp 213–223

  • Lobo FG, Goldberg DE (2004) The parameter-less genetic algorithm in practice. Inf Sci Int J 167(1–4):217–232

    MATH  Google Scholar 

  • Lobo FG, Lima CF, Michalewicz Z (2007) Parameter setting in evolutionary algorithms. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lu C, Stankovic JA, Abdelzaher TF, Tao G, Son SH, Marley M (2000) Performance specifications and metrics for adaptive real-time systems. In: Proceedings of IEEE real-time systems symposium, pp 13–23

  • Menasce DA, Barbara D, Dodge R (2001) Preserving QoS of E-commerce sites through self-tuning: a performance model approach. In: Proceedings of ACM conference on electronic commerce, pp 224–234

  • Meunier H, Talbi EG, Reininger P (2000) A multiobjective genetic algorithm for radio network optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 317–324

  • Montana D, Hussain T, Saxena T (2002) Adaptive reconfiguration of data networks using genetic algorithms. In: Proceedings of ACM conference on genetic and evolutionary computation, pp 1141–1149

  • Northcote-Green J, Wilson R (2006) Control and automation of electrical power distribution systems. CRC Press, Boca Raton

    Google Scholar 

  • Orda A (1999) Routing with end-to-end QoS guarantees in broadband networks. IEEE/ACM Trans Netw 7(3):365–374

    Article  Google Scholar 

  • Purshouse RC, Fleming PJ (2003) Evolutionary many-objective optimization: an exploratory analysis. In: Proceedings of IEEE congress on evolutionary computation, pp 2066–2073

  • Ramírez-Rosado IJ, Bernal-Agustín JL (1998) Genetic algorithms applied to the design of large power distribution systems. IEEE Trans Power Syst 13(2):696–703

    Article  Google Scholar 

  • Riedl A (2002) A hybrid genetic algorithm for routing optimization in IP networks utilizing bandwidth and delay metrics. In: Proceedings of IEEE workshop on IP operations and management, pp 166–170

  • Roy A, Das SK (2004) QM2RP: a QoS-based mobile multicast routing protocol using multi-objective genetic algorithm. Wirel Netw 10(3):271–286

    Article  Google Scholar 

  • Shahidehpour M, Wang Y (2003) Communication and control in electric power systems: applications of parallel and distributed processing. Wiley-IEEE, New York

    Google Scholar 

  • Sun B, Li L (2004) Optimizing on multiple constrained QoS multicast routing algorithms based on GA. J Syst Eng Electron 15(4):677–683

    Google Scholar 

  • Wang Z, Crowcroft J (1996) Quality-of-service routing for supporting multimedia applications. IEEE J Sel Areas Commun 14(7):1228–1234

    Article  Google Scholar 

  • Xiang F, Junzhou L, Jieyi W, Guanqun G (1999) QoS routing based on genetic algorithm. Comput Commun 22(15):1392–1399

    Article  Google Scholar 

  • Ye T, Kalyanaraman S (2003) A recursive random search algorithm for large-scale network parameter configuration. ACM SIGMETRICS Perform Eval Rev 31(1):196–205

    Article  Google Scholar 

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Champrasert, P., Suzuki, J. & Otani, T. Evolutionary high-dimensional QoS optimization for safety-critical utility communication networks. Nat Comput 10, 1431–1458 (2011). https://doi.org/10.1007/s11047-011-9252-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-011-9252-2

Keywords

Navigation