Skip to main content

Influences on the formation and evolution of Physarum polycephalum inspired emergent transport networks

Abstract

The single-celled organism Physarum polycephalum efficiently constructs and minimises dynamical nutrient transport networks resembling proximity graphs in the Toussaint hierarchy. We present a particle model which collectively approximates the behaviour of Physarum. We demonstrate spontaneous transport network formation and complex network evolution using the model and show that the model collectively exhibits quasi-physical emergent properties, allowing it to be considered as a virtual computing material. This material is used as an unconventional method to approximate spatially represented geometry problems by representing network nodes as nutrient sources. We demonstrate three different methods for the construction, evolution and minimisation of Physarum-like transport networks which approximate Steiner trees, relative neighbourhood graphs, convex hulls and concave hulls. We extend the model to adapt population size in response to nutrient availability and show how network evolution is dependent on relative node position (specifically inter-node angle), sensor scaling and nutrient concentration. We track network evolution using a real-time method to record transport network topology in response to global differences in nutrient concentration. We show how Steiner nodes are utilised at low nutrient concentrations whereas direct connections to nutrients are favoured when nutrient concentration is high. The results suggest that the foraging and minimising behaviour of Physarum-like transport networks reflect complex interplay between nutrient concentration, nutrient location, maximising foraging area coverage and minimising transport distance. The properties and behaviour of the synthetic virtual plasmodium may be useful in future physical instances of distributed unconventional computing devices, and may also provide clues to the generation of emergent computation behaviour by Physarum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Adamatzky A (1991) Neural algorithm for constructing minimum spanning tree of a finite planar set. Neural Netw World 6:335–339

    Google Scholar 

  2. Adamatzky A (2007) Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Process Lett 17(4):455–467

    MathSciNet  Article  Google Scholar 

  3. Adamatzky A (2008a) Developing proximity graphs by Physarum Polycephalum: does the plasmodium follow Toussaint hierarchy? Parallel Process Lett 19(1):105–127

    MathSciNet  Article  Google Scholar 

  4. Adamatzky A (2008b) Growing spanning trees in plasmodium machines. Kybernetes 37(2):258–264

    MathSciNet  MATH  Article  Google Scholar 

  5. Adamatzky A, Jones J (2008) Towards Physarum robots: computing and manipulating on water surface. J Bionic Eng 5(4):348–357

    Article  Google Scholar 

  6. Adamatzky A, De Lacy Costello B et al (2008) Universal computation with limited resources: Belousov-Zhabotinsky and Physarum computers. Int J Bifurc Chaos 18(8):2373–2389

    Article  Google Scholar 

  7. Aono M, Hara M (2007) Amoeba-based nonequilibrium neurocomputer utilizing fluctuations and instability. Lecture notes in computer science, vol 4618. Springer, Berlin, pp 41–54

    Google Scholar 

  8. Duckham M, Kulik L et al (2008) Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recognit 41(10):3224–3236

    MATH  Article  Google Scholar 

  9. Dutta P, Khastgir SP et al (2008) Steiner trees and spanning trees in six-pin soap films. Arxiv: http://arxiv.org/abs/0806.1340

  10. Galton A, Duckham M (2006) What is the region occupied by a set of points? Lecture notes in computer science, vol 4197. Springer, Berlin, pp 81–98

    Google Scholar 

  11. Gunji YP, Shirakawa T et al (2008) Minimal model of a cell connecting amoebic motion and adaptive transport networks. J Theor Biol 253(4):659–667

    Article  Google Scholar 

  12. Hales T (2001) The honeycomb conjecture. Discrete Comput Geom 25(1):1–22

    MathSciNet  MATH  Google Scholar 

  13. Hickey D, Noriega L (2008) Relationship between structure and information processing in Physarum polycephalum. Int J Model Identif Control 4(4):348–356

    Article  Google Scholar 

  14. Ishiguro A, Shimizu M et al (2006) A modular robot that exhibits amoebic locomotion. Robot Auton Syst 54:641–650

    Article  Google Scholar 

  15. Jaromczyk JW, Toussaint GT (1992) Relative neighborhood graphs and their relatives. Proc IEEE 80(9):1502–1517

    Article  Google Scholar 

  16. Jones J (2008) An emergent pattern formation approach to dynamic spatial problems via quantitative front propagation and particle chemotaxis. Int J Unconv Comput 4(4):1–34

    Google Scholar 

  17. Jones J (2009) Passive vs active approaches in particle approximations of reaction-diffusion computing. Int J Nanotechnol Mol Comput 1(3):37–63

    Google Scholar 

  18. Jones J (2010a) Characteristics of pattern formation and evolution in approximations of physarum transport networks. Artif Life 16(2):127–153

    Article  Google Scholar 

  19. Jones J (2010b) The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. Int J Unconv Comput 6(2):125–144

    Google Scholar 

  20. Kobayashi R, Tero A et al (2006) Mathematical model for rhythmic protoplasmic movement in the true slime mold. J Math Biol 53(2):273–286

    MathSciNet  MATH  Article  Google Scholar 

  21. Latty T, Beekman M (2009) Food quality affects search strategy in the acellular slime mould, Physarum polycephalum. Behav Ecol 20(6):1160–1167. doi:10.1093/beheco/arp111

    Article  Google Scholar 

  22. Lobovkina T, Dommersnes PG et al (2008) Shape optimization in lipid nanotube networks. The European Phys J E-Soft Matter 26(3):295–300

    Article  Google Scholar 

  23. Lysenko M, D’Souza RM (2008) A framework for mega scale agent based model simulations on graphics processing units. J Artif Soc Soc Simul 11(4):10

    Google Scholar 

  24. Nakagaki T, Yamada H et al (1999) Reaction–diffusion–advection model for pattern formation of rhythmic contraction in a giant amoeboid cell of the Physarum plasmodium. J Theor Biol 197(4):497–506

    Article  Google Scholar 

  25. Nakagaki T, Yamada H et al (2000) Maze-solving by an amoeboid organism. Nature 407:470

    Article  Google Scholar 

  26. Nakagaki T, Kobayashi R et al (2004a) Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proc R Soc B Biol Sci 271(1554):2305–2310

    Article  Google Scholar 

  27. Nakagaki T, Yamada H et al (2004b) Smart network solutions in an amoeboid organism. Biophys Chem 107(1):1–5

    Article  Google Scholar 

  28. Nakagaki T, Saigusa T, Tero A, Kobayashi R (2007) Effects of amount of food on path selection in the transport network of an amoeboid organism. In: Proceedings of the international symposium: topological aspects of critical systems and networks, 13–14 February 2006. World Scientific Publishing, Sapporo, Japan, pp 94–100

  29. Richmond P, Coakley S, Romano DM (2009) A high performance agent based modelling framework on graphics card hardware with CUDA. In: Proceedings of the 8th international conference on autonomous agents and multiagent systems-volume 2. International Foundation for Autonomous Agents and Multiagent Systems, Budapest, Hungary, pp 1125–1126

  30. Shirakawa T, Adamatzky A, Gunji YP, Miyake Y (2009) On simultaneous construction of Voronoi diagram and Delaunay triangulation by Physarum polycephalum. Int J Bifurc Chaos 19(9):3109–3117

    Article  Google Scholar 

  31. Takagi S, Ueda T (2007) Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum. Phys D Nonlinear Phenom 237(3):420–427

    Article  Google Scholar 

  32. Takamatsu A (2006) Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold. Phys D Nonlinear Phenom 223(2):180–188

    Article  Google Scholar 

  33. Takamatsu A, Takaba E et al (2009) Environment-dependent morphology in plasmodium of true slime mold Physarum polycephalum and a network growth model. J Theor Biol 256(1):29–44

    Article  Google Scholar 

  34. Tero A, Kobayashi R et al (2007) A mathematical model for adaptive transport network in path finding by true slime mold. J Theor Biol 244(4):553–564

    MathSciNet  Article  Google Scholar 

  35. Toussaint GT (1980) The relative neighbourhood graph of a finite planar set. Pattern Recognit 12(4):261–268

    MathSciNet  MATH  Article  Google Scholar 

  36. Tsuda S, Aono M et al (2004) Robust and emergent Physarum logical-computing. BioSystems 73(1):45–55

    Article  Google Scholar 

  37. Tsuda S, Zauner K et al (2007) Robot control with biological cells. BioSystems 87(2–3):215–223

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Andrew Adamatzky for providing the source data node positions for the proximity graph experiments. The work was supported by the Leverhulme Trust research grant F/00577/1 “Mould intelligence: biological amorphous robots”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeff Jones.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jones, J. Influences on the formation and evolution of Physarum polycephalum inspired emergent transport networks. Nat Comput 10, 1345–1369 (2011). https://doi.org/10.1007/s11047-010-9223-z

Download citation

Keywords

  • Physarum polycephalum
  • Transport networks
  • Emergent behaviour
  • Network minimisation
  • Optimisation