Skip to main content

Flocking based approach for data clustering

Abstract

Data clustering is a process of extracting similar groups of the underlying data whose labels are hidden. This paper describes different approaches for solving data clustering problem. Particle swarm optimization (PSO) has been recently used to address clustering task. An overview of PSO-based clustering approaches is presented in this paper. These approaches mimic the behavior of biological swarms seeking food located in different places. Best locations for finding food are in dense areas and in regions far enough from others. PSO-based clustering approaches are evaluated using different data sets. Experimental results indicate that these approaches outperform K-means, K-harmonic means, and fuzzy c-means clustering algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abraham A, Guo H, Liu H (2006) Swarm intelligence: foundations, perspectives and applications. In: Nedjah N, Mourelle L (eds) Studies in computational intelligence. Springer-Verlag, Germany

    Google Scholar 

  2. Ahmadi A, Karray F, Kamel MS (2007a) Multiple cooperating swarms for data clustering. In: Proceeding of the IEEE swarm intelligence symposium, Honolulu, Hawaii, 1–5 April 2007

  3. Ahmadi A, Karray F, Kamel MS (2007b) Particle swarm-based approaches for clustering phoneme data. In: UW and IEEE Kitchener-Waterloo section joint workshop on multimedia mining and knowledge discovery, Waterloo, Canada, 17–18 Oct 2007

  4. Bezdek J (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    MATH  Google Scholar 

  5. Blake CL, Merz CJ (1998) UCI repository of machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html

  6. Cui X, Potok TE, Palathingal P (2005) Document clustering using particle swarm optimization. In: Proceeding of the IEEE swarm intelligence symposium, Pasadena, CA, 8–10 June 2005

  7. Cui X, Gao J, Potok TE (2006) A flocking based algorithm for document clustering analysis. J Syst Archit 52(8–9):505–515

    Article  Google Scholar 

  8. Deneubourg JL, Goss S, Franks N, Sendova-Franks A, Detrain C, Chretien D (1991) The dynamics of collective sorting: robot-like ant and ant-like robot. In: Meyer JA, Wilson SW (eds) First conference on simulation of adaptive behavior, MIT Press, Cambridge

  9. Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley, New York

    Google Scholar 

  10. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Cybernetics 3:32–57

    MATH  Article  MathSciNet  Google Scholar 

  11. Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceeding of the IEEE international conference on neural networks, Perth, Australia, November 27–December 1, 1995

  12. Engelbrecht AP (2002) Computational intelligence: an introduction. Wiley, New York

    Google Scholar 

  13. Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, Chichester, UK

    Google Scholar 

  14. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceeding of international conference on knowledge discovery and data mining, Portland, OR, 2–4 Aug 1996

  15. Halkidi M, Vazirgiannis M (2001) Clustering validity assessment: finding the optimal partitioning of a data set. In: Proceeding of the IEEE international conference on data mining, San Jose, CA, November 29–December 2, 2001

  16. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. Intell Inf Syst 17(2–3):107–145

    MATH  Article  Google Scholar 

  17. Handl J, Meyer B (2007) Ant-based and swarm-based clustering. Swarm Intell 1:95–113

    Article  Google Scholar 

  18. Holden N, Freitas AA (2005) A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data. In: IEEE swarm intelligence symposium, Pasadena, CA, 8–10 June 2005

  19. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  20. Kanade M, Hall LO (2003) Fuzzy ants as a clustering concept. In: 22nd international conference of the North American fuzzy information processing society, Chicago, IL, 24–26 July 2003

  21. Kazemian M, Ramezani Y, Lucas C, Moshiri B (2006) Swarm clustering based on flowers pollination by artificial bees. In: Abraham A, Grosan C, Ramos V (eds) Swarm intelligence in data mining. Springer Verlag, Germany

    Google Scholar 

  22. Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan Kaufman Publishers, Los Altos

  23. Lumber E, Faieta B (1994) Density and adaptation in populations of clustering ants. In: Third European conference on simulation of adaptive behavior, MIT Press, Cambridge

  24. Monmarche N, Silmane M, Venturini G (1999) On improving clustering in numerical databases with artificial ants. In: 5th European conference on advances on artificial life, Lausanne, Switzerland, 13–17 Sept 1999

  25. Omran M, Engelbrecht AP, Salman A (2005) Particle swarm optimization method for image clustering. Int J Pattern Recognit Artif Intell 19(3):297–321

    Article  Google Scholar 

  26. Omran M, Salman A, Engelbrecht AP (2006) Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Anal Appl 6:332–344

    MathSciNet  Google Scholar 

  27. Paquet U (2003) Training support vector machines with particle swarms. Dissertation, Department of Computer Science of Pretoria, South Africa

  28. Turi RH (2001) Clustering-based colour image segmentation. Dissertation, Monash University, Australia

  29. van der Merwe DW, Engelbrecht AP (2003) Data clustering using particle swarm optimization. In: Proceeding of the IEEE congress on evolutionary computation, Canberra, Australia, 8–12 Dec 2003

  30. Xiao X, Dow ER, Eberhart R, Miled ZB, Oppelt RJ (2003a) Gene clustering using self-organizing maps and particle swarm optimization. In: Proceeding of international parallel processing symposium, Nice, France, 22–26 Apr 2003

  31. Xiao X, Dow ER, Eberhart R, Miled ZB, Oppelt RJ (2003b) A hybrid self-organizing maps and particle swarm optimization approach. Concurr Comput Pract Exp 16(9):895–915

    Article  Google Scholar 

  32. Zhang B, Hsu M, Dayal U (1999) K-harmonic means: a data clustering algorithm. Software Technology Laboratory, HP Laboratories, Palo Alto

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abbas Ahmadi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmadi, A., Karray, F. & Kamel, M.S. Flocking based approach for data clustering. Nat Comput 9, 767–791 (2010). https://doi.org/10.1007/s11047-009-9173-5

Download citation

Keywords

  • Particle swarm optimization
  • Swarm intelligence
  • Data clustering