Skip to main content
Log in

Entropy and algorithmic complexity in quantum information theory

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

A theorem of Brudno says that the entropy production of classical ergodic information sources equals the algorithmic complexity per symbol of almost every sequence emitted by such sources. The recent advances in the theory and technology of quantum information raise the question whether a same relation may hold for ergodic quantum sources. In this paper, we discuss a quantum generalization of Brudno’s result which connects the von Neumann entropy rate and a recently proposed quantum algorithmic complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adleman LM, Demarrais J, Huang MA (1997) Quantum computability. SIAM Journal on Computing 26:1524–1540

    Article  MATH  MathSciNet  Google Scholar 

  • Alicki R and Fannes M (2001) Quantum Dynamical Systems. Oxford University Press

  • Alicki R, Narnhofer H (1995). Comparison of dynamical entropies for the noncommutative shifts. Letters in Mathematical Physics 33:241–247

    Article  MATH  MathSciNet  Google Scholar 

  • Alekseev VM, Yakobson MV (1981) Symbolic dynamics and hyperbolic dynamic systems. Physics Reports 75:287

    Article  MathSciNet  Google Scholar 

  • Benatti F, Krueger T, Mueller M, Siegmund-Schultze R and Szkoła A (2006) Entropy and Algorithmic Complexity in Quantum Information Theory: A Quantum Brudno’s Theorem. Commun. Math. Phys. 265: 437–461

    Google Scholar 

  • Bernstein E, Vazirani U (1997) Quantum complexity theory. SIAM Journal on Computing 26:1411–1473

    Article  MATH  MathSciNet  Google Scholar 

  • Berthiaume A, Van Dam W, Laplante S (2001). Quantum Kolmogorov complexity. Journal of Computer and System Sciences 63:201–221

    Article  MATH  MathSciNet  Google Scholar 

  • Billingsley P (1965) Ergodic Theory and Information. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York

  • Bjelaković I, Krüger T, Siegmund-Schultze Ra and Szko ła A (2003) Chained Typical Subspaces-a Quantum Version of Breiman’s Theorem, quant-ph/0301177

  • Bjelaković I, Krüger T, Siegmund-Schultze Ra, Szkoła A (2004). The Shannon–McMillan theorem for ergodic quantum lattice systems. Inventiones Mathematicae 155:203–222

    Article  MathSciNet  Google Scholar 

  • Brudno AA (1983). Entropy and the complexity of the trajectories of a dynamical system. Transactions of the Moscow Mathematical Society 2:127–151

    Google Scholar 

  • Calude C (2002) Information and Randomness. An Algorithmic Perspective, 2nd edn. Springer-Verlag, Berlin

  • Chaitin GJ (1966). On the length of programs for computing binary sequences. Journal of the Association for Computing Machinery 13:547–569

    MATH  MathSciNet  Google Scholar 

  • Cover TM and Thomas JA (1991) Elements of Information Theory, Wiley Series in Telecommunications. John Wiley & Sons, New York

  • Frigg R (2004). In what sense is the Kolmogorov–Sinai entropy a measure for chaotic behaviour? Bridging the gap between dynamical systems theory and communication theory. British Journal for the Philosophy of Science 55:411–434

    Article  MATH  MathSciNet  Google Scholar 

  • Gács P (2001) Quantum algorithmic entropy. Journal of Physics A: Mathematical and General 34:6859–6880

    Article  MATH  MathSciNet  Google Scholar 

  • Kaltchenko A., Yang E.H. (2003). Universal compression of ergodic quantum sources. Quantum Information and Computation 3(4):359–375

    MathSciNet  Google Scholar 

  • Kolmogorov AN (1965) Three approaches to the quantitative definition on information. Problems of Information Transmission 1:4–7

    MathSciNet  Google Scholar 

  • Kolmogorov AN (1968). Logical basis for information theory and probability theory. IEEE Transactions on Information Theory 14:662–664

    Article  MATH  MathSciNet  Google Scholar 

  • Li M and Vitanyi P (1997) An introduction to Kolmogorov complexity and its applications. Springer Verlag

  • Mora C and Briegel HJ (2005) Algorithmic complexity and entanglement of quantum states. Phys. Rev. Lett. 95:200503

    Google Scholar 

  • Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Solomonoff RJ (1964) A formal theory of inductive inference. Information and Control 7, 1–22, 224–254

    Google Scholar 

  • Svozil K (1990) The quantum coin toss-testing microphysical undecidability. Physics Letters A 143:433–437

    Article  MathSciNet  Google Scholar 

  • Uspenskii VA, Semenov AL, Shen AKh (1990) Can an individual sequence of zeros and ones be random. Uspekhi Mat. Nauk. 45(1):105–162

    Article  MathSciNet  Google Scholar 

  • Vitányi P (2001) Quantum Kolmogorov complexity based on classical descriptions. IEEE Transactions on Information Theory 47(6):2464–2479

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Benatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benatti, F. Entropy and algorithmic complexity in quantum information theory. Nat Comput 6, 133–150 (2007). https://doi.org/10.1007/s11047-006-9017-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-006-9017-5

Keywords

Navigation