Skip to main content

Advertisement

Log in

Genotypic Diversity and Antifungal Susceptibility of Clinical Isolates of Cryptococcus Gattii Species Complex from Argentina

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the genotypic diversity of 22 Cryptococcus gattii species complex clinical isolates from Argentina and to place these genotypes within the diversity of clinical, veterinary and environmental isolates from Latin America. Mating type and antifungal susceptibility of the isolates were also determined. By URA5-RFLP, nine isolates were identified as molecular type VGI, 10 as VGII, one as VGIII and two as VGIV. Multilocus sequence typing (MSLT), following the International Society for Human and Animal Mycology (ISHAM) consensus MLST scheme, was used to determine the genotypic diversity. Our results suggest that, in Argentina, VGI isolates have low genetic diversity, while VGII isolates have high genetic diversity. Both isolates identified as VGIV by URA5-RFLP were genotyped by MLST as belonging to the currently named VGVI clade. From all isolates, eight sequence types (STs) were unique for Argentina, while five STs have been reported already in other countries, being of high interest the genotypes ST20 and ST7 since they belong to the subtypes VGIIa and VGIIb, respectively, which are associated with hypervirulent strains responsible for outbreaks in North America. To note, geographical analysis showed that some genotypes may be associated with some regions in Argentina. Most isolates were MATα, but we are reporting one isolate MATa for the first time in the country. Antifungal susceptibility tests showed that itraconazole, voriconazole and posaconazole had high activity against all isolates, while amphotericin B, fluconazole and 5-fluorocytosine were the least active drugs against all studied isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol. 2015;78:16–48.

    Article  CAS  PubMed  Google Scholar 

  2. Farrer RA, Chang M, Davis MJ, van Dorp L, Yang D-H, Shea T, et al. A new lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. MBio. 2019;10:e02306-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases. Cryptococcus gattii infection statistics [Internet]. https://www.cdc.gov/fungal/diseases/cryptococcosis-gattii/statistics.html. Accessed 4 May 2022

  4. MacDougall L, Kidd SE, Galanis E, Mak S, Leslie MJ, Cieslak PR, et al. Spread of Cryptococcus gattii in British Columbia, Canada, and detection in the Pacific Northwest, USA. Emerg Infect Dis. 2007;13:42–50.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Byrnes EJ, Li W, Lewit Y, Ma H, Voelz K, Ren P, et al. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog. 2010;6:e1000850.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Byrnes EJ, Bartlett KH, Perfect JR, Heitman J. Cryptococcus gattii: an emerging fungal pathogen infecting humans and animals. Microbes Infect. 2011;13:895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Byrnes EJ, Marr KA. The outbreak of Cryptococcus gattii in Western North America: epidemiology and clinical issues. Curr Infect Dis Rep. 2011;13:256–61.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Harris JR, Lockhart SR, Sondermeyer G, Vugia DJ, Crist MB, D’Angelo MT, et al. Cryptococcus gattii infections in multiple states outside the US Pacific Northwest. Emerg Infect Dis. 2013;19:1620–6.

    Article  PubMed  Google Scholar 

  9. Bartlett KH, Cheng P-Y, Duncan C, Galanis E, Hoang L, Kidd S, et al. A decade of experience: Cryptococcus gattii in British Columbia. Mycopathologia. 2012;173:311–9.

    Article  PubMed  Google Scholar 

  10. Centers for Disease Control and Prevention (CDC). Emergence of Cryptococcus gattii–Pacific Northwest, 2004–2010. MMWR Morb Mortal Wkly Rep. 2010;59:865–8.

    Google Scholar 

  11. Kidd SE, Hagen F, Tscharke RL, Huynh M, Bartlett KH, Fyfe M, et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci U S A. 2004;101:17258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Galanis E, MacDougall L, Kidd S, Morshed M. Epidemiology of Cryptococcus gattii, British Columbia, Canada, 1999–2007. Emerg Infect Dis. 2010;16:251–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harris JR, Lockhart SR, Debess E, Marsden-Haug N, Goldoft M, Wohrle R, et al. Cryptococcus gattii in the United States: clinical aspects of infection with an emerging pathogen. Clin Infect Dis. 2011;53:1188–95.

    Article  CAS  PubMed  Google Scholar 

  14. Firacative C, Lizarazo J, Illnait-Zaragozí MT, Castañeda E, Latin American Cryptococcal Study Group. The status of cryptococcosis in Latin America. Mem Inst Oswaldo Cruz. 2018;113:e170554.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang D-H, England MR, Salvator H, Anjum S, Park Y-D, Marr KA, et al. Cryptococcus gattii species complex as an opportunistic pathogen: underlying medical conditions associated with the infection. MBio. 2021;12:e0270821.

    Article  PubMed  Google Scholar 

  16. Chen SC-A, Meyer W, Sorrell TC. Cryptococcus gattii infections. Clin Microbiol Rev. 2014;27:980–1024.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Francisco EC, de Jong AW, Hagen F. Cryptococcosis and Cryptococcus. Mycopathologia. 2021;186:729–31.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hong N, Chen M, Xu J. Molecular markers reveal epidemiological patterns and evolutionary histories of the human pathogenic Cryptococcus. Front Cell Infect Microbiol. 2021;11:683670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meyer W, Mitchell TG. Polymerase chain reaction fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences: strain variation in Cryptococcus neoformans. Electrophoresis. 1995;16:1648–56.

    Article  CAS  PubMed  Google Scholar 

  20. Hagen F, Illnait-Zaragozi M-T, Bartlett KH, Swinne D, Geertsen E, Klaassen CHW, et al. In vitro antifungal susceptibilities and amplified fragment length polymorphism genotyping of a worldwide collection of 350 clinical, veterinary, and environmental Cryptococcus gattii isolates. Antimicrob Agents Chemother. 2010;54:5139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boekhout T, Theelen B, Diaz M, Fell JW, Hop WCJ, Abeln ECA, et al. Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology (Reading). 2001;147:891–907.

    Article  CAS  PubMed  Google Scholar 

  22. Meyer W, Castañeda A, Jackson S, Huynh M, Castañeda E, IberoAmerican Cryptococcal Study Group. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis. 2003;9:189–95.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47:561–70.

    Article  CAS  PubMed  Google Scholar 

  24. Illnait-Zaragozi M-T, Martínez-Machín GF, Fernández-Andreu CM, Boekhout T, Meis JF, Klaassen CHW. Microsatellite typing of clinical and environmental Cryptococcus neoformans var grubii isolates from cuba shows multiple genetic lineages. PLOS ONE. 2010;5:e9124.

    Article  PubMed  PubMed Central  Google Scholar 

  25. D’Souza CA, Kronstad JW, Taylor G, Warren R, Yuen M, Hu G, et al. Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts. MBio. 2011;2:e00342-00310.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Taverna CG, Bosco-Borgeat ME, Mazza M, Vivot ME, Davel G, Canteros CE, et al. Frequency and geographical distribution of genotypes and mating types of Cryptococcus neoformans and Cryptococcus gattii species complexes in Argentina. Rev Argent Microbiol. 2020;52:183–8.

    PubMed  Google Scholar 

  27. Firacative C, Meyer W, Castañeda E. Cryptococcus neoformans and Cryptococcus gattii species complexes in Latin America: a map of molecular types, genotypic diversity, and antifungal susceptibility as reported by the Latin American cryptococcal study group. J Fungi (Basel). 2021;7:282.

    Article  CAS  PubMed  Google Scholar 

  28. Berejnoi A, Taverna CG, Mazza M, Vivot M, Isla G, Córdoba S, et al. First case report of cryptococcosis due to Cryptococcus decagattii in a pediatric patient in Argentina. Rev Soc Bras Med Trop. 2019;52:e20180419.

    Article  PubMed  Google Scholar 

  29. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Teun B, editors. The yeasts a taxonomic study. 5th ed. Amsterdam: Elsevier; 2011.

    Google Scholar 

  30. Taverna CG, Mazza M, Bueno NS, Alvarez C, Amigot S, Andreani M, et al. Development and validation of an extended database for yeast identification by MALDI-TOF MS in Argentina. Med Mycol. 2019;57:215–25.

    Article  CAS  PubMed  Google Scholar 

  31. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–8.

    CAS  Google Scholar 

  32. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Firacative C, Roe CC, Malik R, Ferreira-Paim K, Escandón P, Sykes JE, et al. MLST and whole-genome-based population analysis of Cryptococcus gattii VGIII links clinical, veterinary and environmental strains, and reveals divergent serotype specific sub-populations and distant ancestors. PLoS Negl Trop Dis. 2016;10:e0004861.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.

    Article  CAS  PubMed  Google Scholar 

  35. Chaturvedi S, Rodeghier B, Fan J, McClelland CM, Wickes BL, Chaturvedi V. Direct PCR of Cryptococcus neoformans MATalpha and MATa pheromones to determine mating type, ploidy, and variety: a tool for epidemiological and molecular pathogenesis studies. J Clin Microbiol. 2000;38:2007–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Campbell LT, Fraser JA, Nichols CB, Dietrich FS, Carter D, Heitman J. Clinical and environmental isolates of Cryptococcus gattii from Australia that retain sexual fecundity. Eukaryot Cell. 2005;4:1410–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arendrup, MC, Meletiadis, J, Mouton, JW, Lagrou, K, Petr Hamal, Guinea, J, et al. EUCAST DEFINITIVE DOCUMENT E.DEF 7.3.2. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. [Internet], 2020 http://www.eucast.org.

  38. Espinel-Ingroff A, Chowdhary A, Cuenca-Estrella M, Fothergill A, Fuller J, Hagen F, et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for amphotericin B and flucytosine. Antimicrob Agents Chemother. 2012;56:3107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Espinel-Ingroff A, Aller AI, Canton E, Castañón-Olivares LR, Chowdhary A, Cordoba S, et al. Cryptococcus neoformansCryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother. 2012;56:5898–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Astvad KMT, Arikan-Akdagli S, Arendrup MC. A pragmatic approach to susceptibility classification of yeasts without EUCAST clinical breakpoints. J Fungi (Basel). 2022;8:141.

    Article  CAS  PubMed  Google Scholar 

  41. The European Committee on Antimicrobial Susceptibility Testing. Overview of antifungal ECOFFs and clinical breakpoints for yeasts, moulds and dermatophytes using the EUCAST E.Def 7.3, E.Def 9.4 and E.Def 11.0 procedures. Version 3. [Internet]. 2022. http://www.eucast.org.

  42. Springer DJ, Billmyre RB, Filler EE, Voelz K, Pursall R, Mieczkowski PA, et al. Cryptococcus gattii VGIII isolates causing infections in HIV/AIDS patients in Southern California: identification of the local environmental source as arboreal. PLoS Pathog. 2014;10:e1004285.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lizarazo J, Escandón P, Agudelo CI, Firacative C, Meyer W, Castañeda E. Retrospective study of the epidemiology and clinical manifestations of Cryptococcus gattii infections in Colombia from 1997–2011. PLoS Negl Trop Dis. 2014;8:e3272.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Firacative C, Trilles L, Meyer W. MALDITOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS ONE. 2012;7:e37566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Refojo N, Perrotta D, Brudny M, Abrantes R, Hevia AI, Davel G. Isolation of Cryptococcus neoformans and Cryptococcus gattii from trunk hollows of living trees in Buenos Aires City. Argent Med Mycol. 2009;47:177–84.

    Article  CAS  Google Scholar 

  46. Mazza M, Refojo N, Bosco-Borgeat ME, Taverna CG, Trovero AC, Rogé A, et al. Cryptococcus gattii in urban trees from cities in North-Eastern Argentina. Mycoses. 2013;56:646–50.

    Article  CAS  PubMed  Google Scholar 

  47. Cattana ME, de Sosa LÁ M, Fernández M, Rojas F, Mangiaterra M, Giusiano G. Native trees of the Northeast Argentine: natural hosts of the Cryptococcus neoformansCryptococcus gattii species complex. Rev Iberoam Micol. 2014;31:188–92.

    Article  PubMed  Google Scholar 

  48. Halliday CL, Carter DA. Clonal reproduction and limited dispersal in an environmental population of Cryptococcus neoformans var. gattii isolates from Australia. J Clin Microbiol. 2003;41:703–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carriconde F, Gilgado F, Arthur I, Ellis D, Malik R, van de Wiele N, et al. Clonality and α-a recombination in the Australian Cryptococcus gattii VGII population–an emerging outbreak in Australia. PLoS ONE. 2011;6:e16936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lockhart SR, Iqbal N, Harris JR, Grossman NT, DeBess E, Wohrle R, et al. Cryptococcus gattii in the United States: genotypic diversity of human and veterinary isolates. PLoS ONE. 2013;8:e74737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Espinel-Ingroff A, Kidd SE. Current trends in the prevalence of Cryptococcus gattii in the United States and Canada. Infect Drug Resist. 2015;8:89–97.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Barcellos VA, Martins LMS, Fontes ACL, Reuwsaat JCV, Squizani ED, de Sousa Araújo GR, et al. Genotypic and phenotypic diversity of Cryptococcus gattii VGII clinical isolates and its impact on virulence. Front Microbiol. 2018;9:132.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vilas-Bôas AM, Andrade-Silva LE, Ferreira-Paim K, Mora DJ, Ferreira TB, de Santos DA, et al. High genetic variability of clinical and environmental Cryptococcus gattii isolates from Brazil. Med Mycol. 2020;58:1126–37.

    Article  PubMed  Google Scholar 

  54. Maruyama FH, de Paula DAJ, de Menezes I, G, Favalessa OC, Hahn RC, de Almeida A do BPF, et al. Genetic diversity of the Cryptococcus gattii species complex in Mato Grosso State, Brazil. Mycopathologia. 2019;184:45–51.

    Article  CAS  PubMed  Google Scholar 

  55. Hagen F, Ceresini PC, Polacheck I, Ma H, van Nieuwerburgh F, Gabaldón T, et al. Ancient dispersal of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest. PLoS ONE. 2013;8:e71148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Souto ACP, Bonfietti LX, Ferreira-Paim K, Trilles L, Martins M, Ribeiro-Alves M, et al. Population genetic analysis reveals a high genetic diversity in the Brazilian Cryptococcus gattii VGII population and shifts the global origin from the Amazon rainforest to the semi-arid desert in the Northeast of Brazil. PLoS Negl Trop Dis. 2016;10:e0004885.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Engelthaler DM, Hicks ND, Gillece JD, Roe CC, Schupp JM, Driebe EM, et al. Cryptococcus gattii in North American Pacific Northwest: whole-population genome analysis provides insights into species evolution and dispersal. MBio. 2014;5:e01464-01414.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Firacative C, Escandón P. Antifungal susceptibility of clinical Cryptococcus gattii isolates from Colombia varies among molecular types. Med Mycol. 2021;59:1122–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee G-HA, Arthur I, Merritt A, Leung M. Molecular types of Cryptococcus neoformans and Cryptococcus gattii in Western Australia and correlation with antifungal susceptibility. Med Mycol. 2019;57:1004–10.

    Article  CAS  PubMed  Google Scholar 

  60. M59 epidemiological cutoff values for antifungal susceptibility testing, 3rd Edition. Clinical and Laboratory Standards Institute, Wayne, 2022

Download references

Acknowledgements

We thank Lucia Irazu for her help in statistical analysis.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection was performed by CGT, BA, MEV, WS and WV. Analysis were performed by CGT, CF, MM, SC and CEC. The first draft of the manuscript was written by CGT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Constanza Giselle Taverna.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

This is an observational study. No ethical approval is required.

Additional information

Handling editor: Min Chen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taverna, C.G., Arias, B.A., Firacative, C. et al. Genotypic Diversity and Antifungal Susceptibility of Clinical Isolates of Cryptococcus Gattii Species Complex from Argentina. Mycopathologia 188, 51–61 (2023). https://doi.org/10.1007/s11046-022-00705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-022-00705-x

Keywords

Navigation