Skip to main content

The Impact of Paracoccidioides spp Infection on Central Nervous System Cell Junctional Complexes

Abstract

Paracoccidioidomycosis (PCM), a systemic mycosis caused by the fungus Paracoccidioides spp. is the most prevalent fungal infection among immunocompetent patients in Latin America. The estimated frequency of central nervous system (CNS) involvement among the human immunodeficiency virus (HIV)/PCM-positive population is 2.5%. We aimed to address the impact of neuroparacoccidioidomycosis (NPCM) and HIV/NPCM co-infection on the tight junctions (TJ) and adherens junction (AJ) proteins of the CNS. Four CNS formalin-fixed paraffin-embedded (FFPE) tissue specimens were studied: NPCM, NPCM/HIV co-infection, HIV-positive without opportunistic CNS infection, and normal brain autopsy (negative control). Immunohistochemistry was used to analyze the endothelial cells and astrocytes expressions of TJ markers: claudins (CLDN)-1, -3, -5 and occludin; AJ markers: β-catenin and E-cadherin; and pericyte marker: alpha-smooth muscle actin. FFPE CNS tissue specimens were analyzed using the immunoperoxidase assay. CLDN-5 expression in the capillaries of the HIV/NPCM coinfected tissues (mixed clinical form of PCM) was lower than that in the capillaries of the HIV or NPCM monoinfected (chronic clinical form of PCM) tissues. A marked decrease in CLDN-5 expression and a compensatory increase in CLDN-1 expression in the NPCM/HIV co-infection tissue samples was observed. The authors suggest that Paracoccidioides spp. crosses the blood–brain barrier through paracellular pathway, owing to the alteration in the CLDN expression, or inside the macrophages (Trojan horse).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and material

Data and material are available after approval of the institutional review board and request to the corresponding author.

References

  1. Shikanai-Yasuda MA, Mendes RP, Colombo AL, Queiroz-Telles F, Kono ASG, Paniago AMM, et al. Brazilian guidelines for the clinical management of paracoccidioidomycosis. Rev Soc Bras Med Trop. 2017;50:715–40.

    PubMed  Article  Google Scholar 

  2. Goldani LZ, Sugar AM. Paracoccidioidomycosis and AIDS: an overview. Clin Infect Dis. 1995;21:1275–81.

    CAS  PubMed  Article  Google Scholar 

  3. Benard G, Duarte AJ. Paracoccidioidomycosis: a model for evaluation of the effects of humanimmunodeficiency virus infection on the natural history of endemic tropical diseases. Clin Infect Dis. 2000;31:1032–9.

    CAS  PubMed  Article  Google Scholar 

  4. Mendes RP, Cavalcante RS, Marques SA, Marques MEA, Venturini J, Sylvestre TF, et al. Paracoccidioidomycosis: current perspectives from Brazil. Open Microbiol J. 2017;11:224–82.

    PubMed  PubMed Central  Article  Google Scholar 

  5. de Almeida SM, Roza TH, Salvador GLO, França JCB, Vidal LRR, Nogueira MB, Oliva LV, Torres LFB, de Noronha L. Neurological and multiple organ involvement due to Paracoccidioides brasiliensis and HIV co-infection diagnosed at autopsy. J Neurovirol. 2017;23:913–8.

    PubMed  Article  Google Scholar 

  6. Nag S, et al. Review: molecular pathogenesis of blood–brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol. 2011;37:3–23.

    CAS  PubMed  Article  Google Scholar 

  7. Atluri VS, Hidalgo M, Samikkannu T, Kurapati KRV, Jayant RD, Sagar V, et al. Effect of human immunodeficiency virus on blood-brain barrier integrity and function: an update. Front Cell Neurosci. 2015;9:212.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Liu WY, Wang ZB, Zhang LC, Wei X, Li L. Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci Ther. 2012;18:609–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. 1998;142:117–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of TJ in the blood-brain barrier. Trends Neurosci. 2001;24:719–25.

    CAS  PubMed  Article  Google Scholar 

  11. Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 2008;32:200–19.

    CAS  PubMed  Article  Google Scholar 

  12. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: An overview– structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.

    CAS  PubMed  Article  Google Scholar 

  13. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008;1778:660–9.

    CAS  PubMed  Article  Google Scholar 

  14. Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol. 2009;1:a002899.

    PubMed  PubMed Central  Article  Google Scholar 

  15. Tietz S, Engelhardt B. Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol. 2015;209:493–506.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers. 2016;4(1):e1154641.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Vorbrodt AW, Dobrogowska DH. Molecular anatomy of interendothelial junctions in human blood–brain barrier microvessels. Folia Histochem Cytobiol. 2004;42:67–75.

    CAS  PubMed  Google Scholar 

  18. Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occluding via matrix metallo proteinase-9. Brain Res. 2012;1436:13–9.

    CAS  PubMed  Article  Google Scholar 

  19. de Almeida SM, Queiroz-Telles F, Doi EM, Ono M, Werneck LC. Anti-gp43 antibodies in the cerebrospinal fluid of patients with central nervous system involvement by paracoccidioidomycosis. Am J Clin Pathol. 2002;118:864–8.

    PubMed  Article  Google Scholar 

  20. Teive HAG, Zanatta Al, Germiniani FMB, de Almeida SM, Werneck LC. Holmes' tremor and neuroparacoccidioidomycosis: A case report. Movement Disorders 2002; 17:1392–4.

  21. Rosa Júnior M, Amorim AC, Baldon IV, Martins LA, Pereira RM, Campos RP, Gonçalves SS, Velloso TRG, Peçanha P, Falqueto A. Paracoccidioidomycosis of the Central Nervous System: CT and MR Imaging Findings. Am J Neuroradiol. 2019;40:1681–8.

    PubMed  PubMed Central  Google Scholar 

  22. Andersson LM, Hagberg L, Fuchs D, Svennerholm B, Gisslen M. Increased blood–brain barrier permeability in neuro-asymptomatic HIV-1-infected individuals, correlation with cerebrospinal fluid HIV-1 RNA and neopterin levels. J NeuroVirol. 2001;7:542–7.

    CAS  PubMed  Article  Google Scholar 

  23. Calcagno A, Alberione MC, Romito A, Imperiale D, Ghisetti V, Audagnotto S, Lipani F, Raviolo S, Di Perri G, Bonora S. Prevalence and predictors of blood–brain barrier damage in the HAART era. J Neurovirol. 2014;20:521–5.

    CAS  PubMed  Article  Google Scholar 

  24. de Almeida SM, Rotta I, Ribeiro CE, Smith D, Wang R, Judicello J, Potter M, Vaida F, Letendre S, Ellis RJ, HNRC Group. Blood-CSF barrier and compartmentalization of CNS cellular immune response in HIV infection. J Neuroimmunol. 2016;301:41–8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. Calcagno A, Motta I, Ghisetti V, Lo Re S, Allice T, Marinaro L, Milia MG, Tettoni MC, Trentini L, Orofino G, Salassa B, Di Perri G, Bonora S. HIV-1 very low level viremia is associated with virological failure in highly active antiretroviral treatment-treated patients. AIDS Res Hum Retrov. 2015;31:999–1008.

    CAS  Article  Google Scholar 

  26. Marshall DW, Brey RL, Butzin CA, Lucey DR, Abbadessa SM, Boswell RN. CSF changes in a longitudinal study of 124 neurologically normal HIV-1-infected U.S. Air Force personnel. J Acquir Immune Defic Syndr. 1991;4:777–81.

    CAS  PubMed  Google Scholar 

  27. McArthur JC, Nance-Sproson TE, Griffin DE, Hoover D, Selnes OA, Miller EN, Margolick JB, Cohen BA, Farzadegan H, Saah A. The diagnostic utility of elevation in cerebrospinal fluid beta 2-microglobulin in HIV-1 dementia. Multicenter AIDS Cohort Study Neurol. 1992;42:1707–12.

    CAS  Google Scholar 

  28. Sporer B, Paul R, Koedel U, Grimm R, Wick M, Goebel FD, Pfister HW. Presence of matrix metalloproteinase-9 activity in the cerebrospinal fluid of human immunodeficiency virus-infected patients. J Infect Dis. 1998;178:854–7.

    CAS  PubMed  Article  Google Scholar 

  29. de Almeida SM, Rotta I, Ribeiro CE, Oliveira MF, Chaillon A, de Pereira AP, et al. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization: case study. J Neurovirol. 2017;23:460–73.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. de Almeida SM, Oliveira MF, Chaillon A, Rotta I, Ribeiro CE, de Pereira AP, et al. Transient and asymptomatic meningitis in human immunodeficiency virus-1 subtype C: a case study of genetic compartmentalization and biomarker dynamics. J Neurovirol. 2018;24:786–96.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Giovannoni G, Miller RF, Heales SJ, Land JM, Harrison MJ, Thompson EJ. Elevated cerebrospinal fluid and serum nitrate and nitrite levels in patients with central nervous system complications of HIV-1 infection: a correlation with blood-brain-barrier dysfunction. J Neurol Sci. 1998;156:53–8.

    CAS  PubMed  Article  Google Scholar 

  32. Strazza M, et al. Breaking down the barrier: The effects of HIV-1 on the blood–brain barrier. Brain Res. 2011;1399:96–115.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Kanmogne GD, Primeaux C, Grammas P. HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permeability: implications for the pathogenesis of HIV-associated dementia. J Neuropathol Exp Neurol. 2005;64:498–505.

    CAS  PubMed  Article  Google Scholar 

  34. Acheampong E, Mukhtar M, Parveen Z, Ngoubilly N, Ahmad N, Patel C, et al. Ethanol strongly potentiates apoptosis induced by HIV-1 proteins in primary human brain microvascular endothelial cells. Virology. 2002;304:222–34.

    CAS  PubMed  Article  Google Scholar 

  35. Nath A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis. 2002;186:S193–8.

    CAS  PubMed  Article  Google Scholar 

  36. Brasil, Ministério da Saúde. Programa Nacional de DST/AIDS. 2018. http://www.aids.gov.br/assistencia/manualdst/item12.htm.

  37. Dore-Duffy P, Mehedi A, Wang X, et al. Immortalized CNS pericytes are quiescent smooth muscle actin-negative and pluripo-tent. Microvasc Res. 2011;82:18–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. de Souza Costa VH, Baurakiades E, Viola Azevedo ML, Traiano G, Kowal Rosales J, Kunze Larsen KS, et al. Immunohistochemistry analysis of pulmonary infiltrates in necropsy samples of 600 children with non-pandemic lethal respiratory infections (RSV; ADV; PIV1; PIV2; PIV3; FLU A; FLU B). J Clin Virol. 2014;61:211–5.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Chong DC, Raboni SM, Abujamra KB, Marani DM, Nogueira MB, Tsuchiya LRV, et al. Respiratory viruses in pediatric necropsies: an immunohistochemical study. Pediatr Dev Pathol. 2009;12:211–6.

    PubMed  Article  Google Scholar 

  40. Okamoto C, Bahr J, Silva L, Noronha L. Análises histopatológica e morfométrica no diagnóstico da “nova” displasia broncopulmonar e comparação clinicopatológica com a forma clássica da doença. J Bras Patol Med Lab. 2009;45:155–60.

    Article  Google Scholar 

  41. Harvey J, Clark G, Osborne C, Allred D. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol. 1999;17:1474–781.

    CAS  PubMed  Article  Google Scholar 

  42. Sladojevic N, Stamatovic SM, Johnson AM, Choi J, Hu A, Dithmer S, Blasig IE, Keep RF, Andjelkovic AV. Claudin-1-dependent destabilization of the blood-brain barrier in chronic stroke. J Neurosci. 2019;39:743–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, Rausch V, Blasig R, Richter M, Sporbert A, Wolburg H, Blasig IE, Haseloff RF. Tight junction proteins at the blood–brain barrier: far more than claudin-5. Cell Mol Life Sci. 2019;76:1987–2002.

    CAS  PubMed  Article  Google Scholar 

  44. Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000;100:323–31.

    CAS  PubMed  Article  Google Scholar 

  45. Shin JS, Hyun SY, Kim DH, Lee S, Jung JW, Choi JW, Ko KH, Kim JM, Ryu JH. Chronic hypoperfusion increases claudin-3 immunoreactivity in rat brain. Neurosci Lett. 2008;445:144–8.

    CAS  PubMed  Article  Google Scholar 

  46. Pfeiffer F, Schafer J, Lyck R, Makrides V, Brunner S, Schaeren-Wiemers N, Deutsch U, Engelhardt B. Claudin-1 induced sealing of blood-brain barrier TJ ameliorates chronic experimental autoimmune encephalomyelitis. Acta Neuropathol. 2011;122:601–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, et al. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1encephalitis. Am J Pathol. 1999;155:1915–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Mahajan SD, et al. Tight junction regulation by morphine and HIV-1 tat modulates blood–brain barrier permeability. J Clin Immunol. 2008;28:528–41.

    CAS  PubMed  Article  Google Scholar 

  49. Andras IE, Pu H, Deli MA, Nath A, Henning B, Toborek M. HIV-1 Tat protein alters tight unction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res. 2003;74:255–65.

    CAS  PubMed  Article  Google Scholar 

  50. Xu R, et al. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res. 2011;1436:13–9.

    PubMed  Article  CAS  Google Scholar 

  51. Sardo L, Vakil PR, Elbezanti W, El-Sayed A, Klase Z. The inhibition of microRNAs by HIV-1 Tat suppresses beta catenin activity in astrocytes. Retrovirology. 2016;13:25.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Louboutin JP, Strayer DS. Blood-Brain Barrier Abnormalities Caused by HIV-1 gp120: mechanistic and Therapeutic Implications. Scientific World Journal. 2012, Article ID 482575, 1–15

  53. Louboutin JP, Agrawal L, Reyes BA, VanBockstaele EJ, Strayer DS. HIV-1gp120-induced injury to the blood-brain barrier:role of metallo proteinases 2 and 9 and relationship to oxidative stress. J Neuropathol Exp Neurol. 2010;69:801–16.

    CAS  PubMed  Article  Google Scholar 

  54. Kanmogne GD, et al. HIV-1 gp120 compromises blood–brain barrier integrity and enhances monocyte migration across blood–brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab. 2007;27:123–34.

    CAS  PubMed  Article  Google Scholar 

  55. Patel CA, Mukhtar M, Pomerantz RJ. Human immunodeficiency vírus type 1 vpr induces apoptosis in human neuronal cells. J Virol. 2000;74:9717–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Sporer B, Koedel U, Paul R, Kohleisen B, Erfle V, Fontana A, Pfisteret HW, al. Human immunodeficiency virus type-1 Nef protein induces blood-brain barrier disruption in the rat: role of matrix metalloproteinase-9. J Neuroimmunol. 2000; 102:125–30

  57. Weiser K, Barton M, Gershoony D, DasGupta R, Cardozo T. HIV’s Nef interacts with β-catenin of the Wnt signaling pathway in HEK293 cells. PLoS ONE. 2013;8:e77865. https://doi.org/10.1371/journal.pone.0077865.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. de Almeida SM, Roza TH, Salvador GLO, Izycki LF, Locatelli G, Santos ID, Aragão A, Torres LFB, de Noronha L. Autopsy and biopsy study of paracoccidioidomycosis and neuroparacoccidioidomycosis with and without HIV co-infection. Mycoses. 2018;61:237–44.

    PubMed  Article  CAS  Google Scholar 

  59. Colombo AL, Junior GT, Lotfi CJ, Lima FO, Levi DS, Accerturi CA. Paracoccidioidomicose disseminada em pacientes com AIDS (achado de necropsia) [abstract]. In: Program and abstracts of the 26th Congresso da Sociedade Brasileira de Medicina Tropical (São Paulo). São Paulo: Sociedade Brasileira de Medicina Tropical, 1989.

  60. Guimarães JCA, Bortoliero AI, Bonametti AM, et al. Infecção oportunista do sistema nervoso central por Paracoccidioides brasiliensis: relato do caso [abstract no 114]. Rev Soc Bras Med Trop. 1991;24:30–1.

    Google Scholar 

  61. Finamor LP, Muccioli C, Martins MC, Rizzo LV, Belfort R. Ocular and central nervous system paracoccidioidomycosis in a pregnant woman with acquired immunodeficiency syndrome. Am J Ophthalmol. 2002;134:456–9.

    PubMed  Article  Google Scholar 

  62. Silva-Vergara ML, Rocha IH, Vasconcelos RR, Maltos AL, de Freitas NF, de Almeida STL, Mora DJ. Central nervous system paracoccidioidomycosis in an AIDS patient: case report. Mycopathologia. 2014;177:137–41.

    PubMed  Article  Google Scholar 

  63. Camacho E, Niño-Vega GA. Paracoccidioides Spp.: virulence factors and immune-evasion strategies. Mediat Inflamm. 2017;2017:531–691. https://doi.org/10.1155/2017/5313691.

    CAS  Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SMdA: conceived and designed the study, performed research, analyzed data, contributed new methods or models, wrote the paper. AK: performed research. MM: performed research. SN: performed research. CdP: performed research. MM: conceived the study. LdN: conceived and designed the study, performed research, analyzed data, contributed new methods or models, wrote the paper.

Corresponding author

Correspondence to Sérgio Monteiro de Almeida.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling Editor: Anamelia Lorenzetti Bocca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Almeida, S.M., Kulik, A., Malaquias, M.A.S. et al. The Impact of Paracoccidioides spp Infection on Central Nervous System Cell Junctional Complexes. Mycopathologia (2022). https://doi.org/10.1007/s11046-022-00653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11046-022-00653-6

Keywords

  • Paracoccidioides spp.
  • Central nervous system
  • Adherens junction
  • Tight junctions
  • HIV
  • Spinal cord