Skip to main content
Log in

Occurrence of Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations in Patients with Allergic Bronchopulmonary Aspergillosis Complicating Asthma

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Background

Whether cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations contribute to the high prevalence of allergic bronchopulmonary aspergillosis (ABPA) in India remains unknown. We aimed to evaluate the occurrence of CFTR mutations in subjects with ABPA complicating asthma.

Methods

We sequenced the CFTR gene using genomic DNA from blood on the Illumina NextSeq500 platform. Before undertaking zygosity analysis by genome analysis toolkit, the known or novel single nucleotide polymorphisms (SNPs) and indels were called. For rigorous analysis, we included only high-quality SNPs (scores > 500) and coverage ranging from 30 × 150x.

Results

We included 18, 12, and eight adult participants of ABPA, asthma, and healthy controls, respectively. The frequency of SNPs was higher in asthmatic subjects than ABPA or healthy controls, albeit not statistically significant (9/12 [75%] vs. 11/18 [61.1%] vs. 3/8 [37.5%], p = 0.24). Of the 38 subjects, 23 yielded 50 variants (healthy controls [n = 5], ABPA [n = 22], asthma [n = 23]) corresponding to six SNPs not previously linked with ABPA. Of these, four SNPs (rs213950, rs200735475, rs1800113, and rs1800136) were catalogued in the NCBI database. We identified two novel SNPs (chr7:117250703, chr7:117282655) in four (ABPA [n = 1], asthma [n = 3]) subjects without corresponding reference SNP. Most SNPs (85.5%) were heterozygous. The frequency of SNPs was higher in ABPA subjects with high-attenuation mucus (52.2%) and bronchiectasis (39.1%) than serological ABPA (8.7%).

Conclusions

Our study suggests the role of CFTR mutations in the pathogenesis of ABPA. The SNPs in the CFTR gene may contribute to disease severity in ABPA. Larger studies are required to confirm our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

Data will be made available on request with the corresponding author.

References

  1. Agarwal R, Muthu V, Sehgal IS, Dhooria S, Prasad KT, Aggarwal AN. Allergic bronchopulmonary aspergillosis. Clin Chest Med. 2022;43(1):99–125.

    Article  Google Scholar 

  2. Tracy MC, Okorie CUA, Foley EA, Moss RB. Allergic Bronchopulmonary Aspergillosis. J Fungi (Basel). 2016;2(2):17. https://doi.org/10.3390/jof2020017.

    Article  CAS  Google Scholar 

  3. Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis. Thorax. 2015;70(3):270–7. https://doi.org/10.1136/thoraxjnl-2014-206291.

    Article  PubMed  Google Scholar 

  4. Agarwal R, Devi D, Gupta D, Chakrabarti A. A questionnaire-based study on the role of environmental factors in allergic bronchopulmonary aspergillosis. Lung India. 2014;31(3):232–6. https://doi.org/10.4103/0970-2113.135762.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Agarwal R, Khan A, Garg M, Aggarwal AN, Gupta D. Pictorial essay: Allergic bronchopulmonary aspergillosis. Ind J Radiol Imaging. 2011;21(4):242–52. https://doi.org/10.4103/0971-3026.90680.

    Article  Google Scholar 

  6. Moss RB, Hsu YP, Olds L. Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes. Clin Exp Immunol. 2000;120(3):518–25.

    Article  CAS  Google Scholar 

  7. Lara-Reyna S, Holbrook J, Jarosz-Griffiths HH, Peckham D, McDermott MF. Dysregulated signalling pathways in innate immune cells with cystic fibrosis mutations. Cell Mol Life Sci. 2020;77(22):4485–503. https://doi.org/10.1007/s00018-020-03540-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mueller C, Braag SA, Keeler A, Hodges C, Drumm M, Flotte TR. Lack of cystic fibrosis transmembrane conductance regulator in CD3+ lymphocytes leads to aberrant cytokine secretion and hyperinflammatory adaptive immune responses. Am J Respir Cell Mol Biol. 2011;44(6):922–9. https://doi.org/10.1165/rcmb.2010-0224OC.

    Article  CAS  PubMed  Google Scholar 

  9. Manti S, Parisi GF, Papale M, Marseglia GL, Licari A, Leonardi S. Type 2 inflammation in cystic fibrosis: new insights. Pediatr Allergy Immunol. 2022;33(Suppl 27):15–7. https://doi.org/10.1111/pai.13619.

    Article  CAS  PubMed  Google Scholar 

  10. Hartl D. Immunological mechanisms behind the cystic fibrosis-ABPA link. Med Mycol. 2009;47(Suppl 1):S183–91. https://doi.org/10.1080/13693780802189938.

    Article  CAS  PubMed  Google Scholar 

  11. Allard JB, Poynter ME, Marr KA, Cohn L, Rincon M, Whittaker LA. Aspergillus fumigatus generates an enhanced Th2-biased immune response in mice with defective cystic fibrosis transmembrane conductance regulator. J Immunol. 2006;177(8):5186–94.

    Article  CAS  Google Scholar 

  12. Maturu VN, Agarwal R. Prevalence of Aspergillus sensitization and allergic bronchopulmonary aspergillosis in cystic fibrosis: systematic review and meta-analysis. Clin Exp Allergy. 2015;45(12):1765–78. https://doi.org/10.1111/cea.12595.

    Article  CAS  PubMed  Google Scholar 

  13. Paranjape SM, Zeitlin PL. Atypical cystic fibrosis and CFTR-related diseases. Clin Rev Allergy Immunol. 2008;35(3):116–23. https://doi.org/10.1007/s12016-008-8083-0.

    Article  CAS  PubMed  Google Scholar 

  14. Colbenson GA, Khawaja A, Baqir M, Wylam ME. A 48-Year-Old Woman With Chronic Cough, Dyspnea, and Bronchiectasis. Chest. 2020;158(5):e245–9. https://doi.org/10.1016/j.chest.2020.06.058.

    Article  PubMed  Google Scholar 

  15. Agarwal R. Burden and distinctive character of allergic bronchopulmonary aspergillosis in India. Mycopathologia. 2014;178(5–6):447–56. https://doi.org/10.1007/s11046-014-9767-z.

    Article  PubMed  Google Scholar 

  16. Agarwal R, Sehgal IS, Dhooria S, Muthu V, Prasad KT, Bal A, et al. Allergic bronchopulmonary aspergillosis. Ind J Med Res. 2020;151(6):529–49. https://doi.org/10.4103/ijmr.IJMR_1187_19.

    Article  CAS  Google Scholar 

  17. Denning DW, Pleuvry A, Cole DC. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults. Med Mycol. 2013;51(4):361–70. https://doi.org/10.3109/13693786.2012.738312.

    Article  PubMed  Google Scholar 

  18. Agarwal R, Denning DW, Chakrabarti A. Estimation of the burden of chronic and allergic pulmonary aspergillosis in India. PLoS ONE. 2014;9(12): e114745. https://doi.org/10.1371/journal.pone.0114745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shah A, Kala J, Sahay S, Panjabi C. Frequency of familial occurrence in 164 patients with allergic bronchopulmonary aspergillosis. Ann Allergy Asthma Immunol. 2008;101(4):363–9.

    Article  Google Scholar 

  20. Agarwal R, Khan A, Aggarwal AN, Gupta D. Link between CFTR mutations and ABPA: a systematic review and meta-analysis. Mycoses. 2012;55(4):357–65. https://doi.org/10.1111/j.1439-0507.2011.02130.x.

    Article  PubMed  Google Scholar 

  21. Agarwal R, Chakrabarti A, Shah A, Gupta D, Meis JF, Guleria R, et al. Allergic bronchopulmonary aspergillosis: review of literature and proposal of new diagnostic and classification criteria. Clin Exp Allergy. 2013;43(8):850–73. https://doi.org/10.1111/cea.12141.

    Article  CAS  PubMed  Google Scholar 

  22. Agarwal R, Dhooria S, Aggarwal AN, Maturu VN, Sehgal IS, Muthu V, et al. Guidelines for diagnosis and management of bronchial asthma: Joint ICS/NCCP (I) recommendations. Lung India. 2015;32(Suppl 1):S3–42. https://doi.org/10.4103/0970-2113.154517.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Muthu V, Singh P, Choudhary H, Dhooria S, Sehgal IS, Prasad KT, et al. Role of recombinant Aspergillus fumigatus antigens in diagnosing Aspergillus sensitisation among asthmatics. Mycoses. 2020;63(9):928–36. https://doi.org/10.1111/myc.13124.

    Article  CAS  PubMed  Google Scholar 

  24. Sehgal IS, Dhooria S, Prasad KT, Muthu V, Aggarwal AN, Rawat A, et al. Sensitization to A fumigatus in subjects with non-cystic fibrosis bronchiectasis. Mycoses. 2021;64(4):412–9. https://doi.org/10.1111/myc.13229.

    Article  CAS  PubMed  Google Scholar 

  25. Muthu V, Sehgal IS, Prasad KT, Dhooria S, Garg M, Aggarwal AN, et al. Epidemiology and outcomes of allergic bronchopulmonary aspergillosis in the elderly. Mycoses. 2022;65(1):71–8. https://doi.org/10.1111/myc.13388.

    Article  CAS  PubMed  Google Scholar 

  26. Marchand E, Verellen-Dumoulin C, Mairesse M, Delaunois L, Brancaleone P, Rahier JF, et al. Frequency of cystic fibrosis transmembrane conductance regulator gene mutations and 5T allele in patients with allergic bronchopulmonary aspergillosis. Chest. 2001;119(3):762–7.

    Article  CAS  Google Scholar 

  27. Eaton TE, Weiner Miller P, Garrett JE, Cutting GR. Cystic fibrosis transmembrane conductance regulator gene mutations: do they play a role in the aetiology of allergic bronchopulmonary aspergillosis? Clin Exp Allergy. 2002;32(5):756–61. https://doi.org/10.1046/j.1365-2222.2002.01361.x.

    Article  CAS  PubMed  Google Scholar 

  28. Gamaletsou MN, Hayes G, Harris C, Brock J, Muldoon EG, Denning DW. F508del CFTR gene mutation in patients with allergic bronchopulmonary aspergillosis. J Asthma. 2018;55(8):837–43. https://doi.org/10.1080/02770903.2017.1373808.

    Article  CAS  PubMed  Google Scholar 

  29. Miller PW, Hamosh A, Macek M Jr, Greenberger PA, MacLean J, Walden SM, et al. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in allergic bronchopulmonary aspergillosis. Am J Hum Genet. 1996;59(1):45–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Aron Y, Bienvenu T, Hubert D, Dusser D, Dall’Ava J, Polla BS. HLA-DR polymorphism in allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol. 1999;104(4 Pt 1):891–2. https://doi.org/10.1016/s0091-6749(99)70306-4.

    Article  CAS  PubMed  Google Scholar 

  31. Lebecque P, Pepermans X, Marchand E, Leonard A, Leal T. ABPA in adulthood: a CFTR-related disorder. Thorax. 2011;66(6):540–1. https://doi.org/10.1136/thx.2010.145862.

    Article  CAS  PubMed  Google Scholar 

  32. Kapoor V, Shastri SS, Kabra M, Kabra SK, Ramachandran V, Arora S, et al. Carrier frequency of F508del mutation of cystic fibrosis in Indian population. J Cyst Fibros. 2006;5(1):43–6. https://doi.org/10.1016/j.jcf.2005.10.002.

    Article  CAS  PubMed  Google Scholar 

  33. Shastri SS, Kabra M, Kabra SK, Pandey RM, Menon PS. Characterisation of mutations and genotype-phenotype correlation in cystic fibrosis: experience from India. J Cyst Fibros. 2008;7(2):110–5. https://doi.org/10.1016/j.jcf.2007.06.004.

    Article  CAS  PubMed  Google Scholar 

  34. Alibakhshi R, Mohammadi A, Khamooshian S, Kazeminia M, Moradi K. CFTR gene mutation spectrum among 735 Iranian patients with cystic fibrosis: A comprehensive systematic review. Pediatr Pulmonol. 2021;56(12):3644–56. https://doi.org/10.1002/ppul.25647.

    Article  PubMed  Google Scholar 

  35. Crespo-Lessmann A, Bernal S, Del Río E, Rojas E, Martínez-Rivera C, Marina N, et al. Association of the CFTR gene with asthma and airway mucus hypersecretion. PLoS ONE. 2021;16(6): e0251881. https://doi.org/10.1371/journal.pone.0251881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schroeder SA, Gaughan DM, Swift M. Protection against bronchial asthma by CFTR delta F508 mutation: a heterozygote advantage in cystic fibrosis. Nat Med. 1995;1(7):703–5.

    Article  CAS  Google Scholar 

  37. Kim KW, Lee JH, Lee MG, Kim KH, Sohn MH, Kim KE. Association between cystic fibrosis transmembrane conductance regulator gene mutations and susceptibility for childhood asthma in Korea. Yonsei Med J. 2010;51(6):912–7. https://doi.org/10.3349/ymj.2010.51.6.912.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Agarwal R. Severe asthma with fungal sensitization. Curr Allergy Asthma Rep. 2011;11(5):403–13. https://doi.org/10.1007/s11882-011-0217-4.

    Article  CAS  PubMed  Google Scholar 

  39. Garred P, Pressler T, Madsen HO, Frederiksen B, Svejgaard A, Hoiby N, et al. Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J Clin Invest. 1999;104(4):431–7. https://doi.org/10.1172/JCI6861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Drumm ML, Konstan MW, Schluchter MD, Handler A, Pace R, Zou F, et al. Genetic modifiers of lung disease in cystic fibrosis. N Engl J Med. 2005;353(14):1443–53. https://doi.org/10.1056/NEJMoa051469.

    Article  CAS  PubMed  Google Scholar 

  41. Dorfman R, Sandford A, Taylor C, Huang B, Frangolias D, Wang Y, et al. Complex two-gene modulation of lung disease severity in children with cystic fibrosis. J Clin Invest. 2008;118(3):1040–9. https://doi.org/10.1172/JCI33754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shanthikumar S, Neeland MN, Saffery R, Ranganathan S. Gene modifiers of cystic fibrosis lung disease: A systematic review. Pediatr Pulmonol. 2019;54(9):1356–66. https://doi.org/10.1002/ppul.24366.

    Article  PubMed  Google Scholar 

  43. Manti S, Parisi GF, Papale M, Licari A, Chiappini E, Mulè E, et al. Allergic bronchopulmonary aspergillosis in children. Pediatr Allergy Immunol. 2020;31(Suppl 26):20–2. https://doi.org/10.1111/pai.13357.

    Article  PubMed  Google Scholar 

Download references

Funding

We acknowledge the partial financial support provided by the International Society for Human and Animal Mycology (ISHAM) through the ISHAM-ABPA working group.

Author information

Authors and Affiliations

Authors

Contributions

RK: data collection, preparation of the first draft, and revision of the manuscript, AA: data collection, data analysis, preparation of the first draft, and revision of the manuscript, AC: data collection and revision of the manuscript, SMR: data collection and revision of the manuscript, RA: conceptualization of the project, data collection, preparation of the first draft, and revision of the manuscript.

Corresponding authors

Correspondence to Amit Arora or Ritesh Agarwal.

Ethics declarations

Conflict of interest

None.

Ethical approval

This is an observational study. The Institute Ethics Committee approved the study protocol.

Informed consent

We obtained written informed consent from all the study subjects. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Patrick CY Woo.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Supplementary file2 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanaujia, R., Arora, A., Chakrabarti, A. et al. Occurrence of Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations in Patients with Allergic Bronchopulmonary Aspergillosis Complicating Asthma. Mycopathologia 187, 147–155 (2022). https://doi.org/10.1007/s11046-022-00631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-022-00631-y

Keywords

Navigation