Skip to main content

Advertisement

Log in

Multi-locus Sequence Typing and Whole Genome Sequence Analysis of Cryptococcus neoformans Isolated from Clinical Specimens in Vajira Hospital, Bangkok, Thailand

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The basidiomycete yeast Cryptococcus neoformans causes disease in immunocompromized patients. Whole genome sequencing (WGS) technology provides insights into the molecular epidemiology of C. neoformans. However, the number of such studies is limited. Here we used WGS and multilocus sequence typing (MLST) to determine the genetic diversity of C. neoformans isolates and genetic structures of their populations among patients admitted to a single hospital in Bangkok, Thailand. Seven isolates from six patients collected during 1 year were identified as C. neoformans sensu stricto according to colony morphology, microscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nucleotide sequence analysis of internal transcribed sequences. These isolates were sensitive to the antifungal drugs amphotericin B, fluconazole, 5-flucytosine, voriconazole, itraconazole and posaconazole and were mating type α and molecular type VNI. MLST analysis identified ST4, ST5 and ST6. We further employed WGS to determine the genetic diversity and relationships of C. neoformans isolated here combined with C. neoformans sequences data acquired from a public database (n = 42). We used the data to construct a phylogenetic tree. WGS provided additional genomics data and achieved high discriminatory power for identifying C. neoformans isolates isolated in Thailand. This report further demonstrates the applicability of WGS analysis for conducting molecular epidemiology and provides insight into the genetic diversity of C. neoformans isolates from one hospital in Thailand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aguiar P, Pedroso RDS, Borges AS, et al. The epidemiology of cryptococcosis and the characterization of Cryptococcus neoformans isolated in a Brazilian University Hospital. Rev Inst Med Trop Sao Paulo. 2017;59:e13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Yan Z, Li X, Xu J. Geographic distribution of mating type alleles of Cryptococcus neoformans in four areas of the United States. J Clin Microbiol. 2002;40(3):965–72.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sathirapanya P, Ekpitakdamrong N, Chusri S, et al. Predictors of hospital discharge outcome from the presenting clinical characteristics and the first cerebrospinal fluid analysis among the patients with cryptococcal meningitis. Clin Neurol Neurosurg. 2019;186:105539.

    Article  PubMed  Google Scholar 

  4. Quintero O, Trachuk P, Lerner MZ, et al. Risk factors of laryngeal cryptococcosis: a case report. Med Mycol Case Rep. 2019;24:82–5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Munoz M, Camargo M, Ramirez JD. Estimating the intra-taxa diversity, population genetic structure, and evolutionary pathways of Cryptococcus neoformans and Cryptococcus gattii. Front Genet. 2018;9:148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hagen F, Khayhan K, Theelen B, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol. 2015;78:16–48.

    Article  CAS  PubMed  Google Scholar 

  7. Kwon-Chung KJ, Bennett JE, Wickes BL, et al. The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. mSphere. 2017;2(1):00357.

    Article  Google Scholar 

  8. Fang W, Fa Z, Liao W. Epidemiology of Cryptococcus and cryptococcosis in China. Fungal Genet Biol. 2015;78:7–15.

    Article  PubMed  Google Scholar 

  9. Worasilchai N, Tangwattanachuleeporn M, Meesilpavikkai K, et al. Diversity and antifungal drug susceptibility of Cryptococcus isolates in Thailand. Med Mycol. 2017;55(6):680–5.

    CAS  PubMed  Google Scholar 

  10. Thanh LT, Phan TH, Rattanavong S, et al. Multilocus sequence typing of Cryptococcus neoformans var. grubii from Laos in a regional and global context. Med Mycol. 2018;57(5):557–65.

    Article  PubMed Central  Google Scholar 

  11. Okubo Y, Wakayama M, Ohno H, et al. Histopathological study of murine pulmonary cryptococcosis induced by Cryptococcus gattii and Cryptococcus neoformans. Jpn J Infect Dis. 2013;66(3):216–21.

    Article  PubMed  Google Scholar 

  12. Umeyama T, Ohno H, Minamoto F, et al. Determination of epidemiology of clinically isolated Cryptococcus neoformans strains in Japan by multilocus sequence typing. Jpn J Infect Dis. 2013;66(1):51–5.

    Article  PubMed  Google Scholar 

  13. Day JN, Qihui S, Thanh LT, et al. Comparative genomics of Cryptococcus neoformans var. grubii associated with meningitis in HIV infected and uninfected patients in Vietnam. PLoS Negl Trop Dis. 2017;11(6):e0005628.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hatthakaroon C, Pharkjaksu S, Chongtrakool P, et al. Molecular epidemiology of cryptococcal genotype VNIc/ST5 in Siriraj Hospital, Thailand. PLoS ONE. 2017;12(3):e0173744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Simwami SP, Khayhan K, Henk DA, et al. Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin. PLoS Pathog. 2011;7(4):e1001343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaocharoen S, Ngamskulrungroj P, Firacative C, et al. Molecular epidemiology reveals genetic diversity amongst isolates of the Cryptococcus neoformans/C. gattii species complex in Thailand. PLoS Negl Trop Dis. 2013;7(7):e2297.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khayhan K, Hagen F, Pan W, et al. Geographically structured populations of Cryptococcus neoformans variety grubii in Asia correlate with HIV status and show a clonal population structure. PLoS ONE. 2013;8(9):e72222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ashton PM, Thanh LT, Trieu PH, et al. Three phylogenetic groups have driven the recent population expansion of Cryptococcus neoformans. Nat Commun. 2019;10(1):2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gerstein AC, Jackson KM, McDonald TR, et al. Identification of pathogen genomic differences that impact human immune response and disease during Cryptococcus neoformans infection. MBio. 2019;10(4):e01440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hua W, Vogan A, Xu J. Genotypic and phenotypic analyses of two "Isogenic" strains of the human fungal pathogen Cryptococcus neoformans var. neoformans. Mycopathologia. 2019;184(2):195–21212.

    Article  CAS  PubMed  Google Scholar 

  21. Rhodes J, Desjardins CA, Sykes SM, et al. Tracing genetic exchange and biogeography of Cryptococcus neoformans var. grubii at the global population level. Genetics. 2017;207(1):327–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Desjardins CA, Giamberardino C, Sykes SM, et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 2017;27(7):1207–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rossen JWA, Friedrich AW, Moran-Gilad J, et al. Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin Microbiol Infect. 2018;24(4):355–60.

    Article  CAS  PubMed  Google Scholar 

  24. McTaggart L, Richardson SE, Seah C, et al. Rapid identification of Cryptococcus neoformans var. grubii, C. neoformans var. neoformans, and C. gattii by use of rapid biochemical tests, differential media, and DNA sequencing. J Clin Microbiol. 2011;49(7):2522–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. McTaggart LR, Lei E, Richardson SE, et al. Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(8):3050–3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang HS, Zeimis RT, Roberts GD. Evaluation of a caffeic acid-ferric citrate test for rapid identification of Cryptococcus neoformans. J Clin Microbiol. 1977;6(5):445–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hopfer RL, Blank F. Caffeic acid-containing medium for identification of Cryptococcus neoformans. J Clin Microbiol. 1976;2(2):115–20.

    CAS  PubMed  Google Scholar 

  28. Chaskes S, Tyndall RL. Pigment production by Cryptococcus neoformans from para- and ortho-Diphenols: effect of the nitrogen source. J Clin Microbiol. 1975;1(6):509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pulverer G, Korth H. Cryptococcus neoformans: pigment formation on polyphenols. Med Microbiol Immunol. 1971;157(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  30. Espinel-Ingroff A, Aller AI, Canton E, et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother. 2012;56(11):5898–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Espinel-Ingroff A, Chowdhary A, Cuenca-Estrella M, et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for amphotericin B and flucytosine. Antimicrob Agents Chemother. 2012;56(6):3107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pllana-Hajdari D, Cogliati M, Cicmak L, et al. First isolation, antifungal susceptibility, and molecular characterization of Cryptococcus neoformans from the environment in Croatia. J Fungi (Basel). 2019;5(4):99.

    Article  CAS  Google Scholar 

  33. Meyer W, Aanensen DM, Boekhout T, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47(6):561–70.

    Article  CAS  PubMed  Google Scholar 

  34. Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Esposto MC, Cogliati M, Tortorano AM, et al. Determination of Cryptococcus neoformans var. neoformans mating type by multiplex PCR. Clin Microbiol Infect. 2004;10(12):1092–4.

    Article  CAS  PubMed  Google Scholar 

  36. Meyer W, Castaneda A, Jackson S, et al. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis. 2003;9(2):189–95.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXivorg %3e q-bio %3e arXiv:13033997; 2013.

  38. McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Glaubitz JC, Casstevens TM, Lu F, et al. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE. 2014;9(2):e90346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nguyen LT, Schmidt HA, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.

    Article  CAS  PubMed  Google Scholar 

  41. Hoang DT, Chernomor O, von Haeseler A, et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–22.

    Article  CAS  PubMed  Google Scholar 

  42. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23(2):254–67.

    Article  CAS  PubMed  Google Scholar 

  43. Hamilton AJ, Holdom MD. Antioxidant systems in the pathogenic fungi of man and their role in virulence. Med Mycol. 1999;37(6):375–89.

    Article  CAS  PubMed  Google Scholar 

  44. Nosanchuk JD, Rosas AL, Lee SC, et al. Melanisation of Cryptococcus neoformans in human brain tissue. Lancet. 2000;355(9220):2049–50.

    Article  CAS  PubMed  Google Scholar 

  45. Perfect JR, Dismukes WE, Dromer F, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010;50(3):291–32222.

    Article  PubMed  Google Scholar 

  46. Cuenca-Estrella M, Gomez-Lopez A, Alastruey-Izquierdo A, et al. Comparison of the Vitek 2 antifungal susceptibility system with the clinical and laboratory standards institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution reference methods and with the Sensititre YeastOne and Etest techniques for in vitro detection of antifungal resistance in yeast isolates. J Clin Microbiol. 2010;48(5):1782–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Espinel-Ingroff A, Pfaller M, Messer SA, et al. Multicenter comparison of the sensititre YeastOne colorimetric antifungal panel with the National Committee for Clinical Laboratory standards M27-A reference method for testing clinical isolates of common and emerging Candida spp., Cryptococcus spp., and other yeasts and yeast-like organisms. J Clin Microbiol. 1999;37(3):591–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee GA, Arthur I, Merritt A, et al. Molecular types of Cryptococcus neoformans and Cryptococcus gattii in Western Australia and correlation with antifungal susceptibility. Med Mycol. 2019;57(8):1004–100.

    Article  PubMed  Google Scholar 

  49. Bandalizadeh Z, Shokohi T, Badali H, et al. Molecular epidemiology and antifungal susceptibility profiles of clinical Cryptococcus neoformans/Cryptococcus gattii species complex. J Med Microbiol. 2020;69(1):72–81.

    Article  PubMed  Google Scholar 

  50. Ngamskulrungroj P, Khayhan K, Pitak-Arnnop P, et al. An association of Cryptococcus neoformans/C. gattii genotype and HIV status in Asia: a systematic review. Siriraj Med J. 2019;71(2):158–64.

    Article  Google Scholar 

  51. Kwon-Chung KJ, Bennett JE. Distribution of alpha and alpha mating types of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol. 1978;108(4):337–40.

    Article  CAS  PubMed  Google Scholar 

  52. Tomazin R, Matos T, Meis JF, et al. Molecular characterization and antifungal susceptibility testing of sequentially obtained clinical Cryptococcus deneoformans and Cryptococcus neoformans isolates from Ljubljana. Slov Mycopathol. 2018;183(2):371–80.

    Article  CAS  Google Scholar 

  53. Nielsen K, Cox GM, Litvintseva AP, et al. Cryptococcus neoformans alpha strains preferentially disseminate to the central nervous system during coinfection. Infect Immun. 2005;73(8):4922–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dodgson AR, Pujol C, Denning DW, et al. Multilocus sequence typing of Candida glabrata reveals geographically enriched clades. J Clin Microbiol. 2003;41(12):5709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Biswas C, Marcelino VR, Van Hal S, et al. Whole genome sequencing of Australian Candida glabrata isolates reveals genetic diversity and novel sequence types. Front Microbiol. 2018;9:2946.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wu SY, Lei Y, Kang M, et al. Molecular characterisation of clinical Cryptococcus neoformans and Cryptococcus gattii isolates from Sichuan province. China Mycoses. 2015;58(5):280–7.

    Article  PubMed  Google Scholar 

  57. Fang LF, Zhang PP, Wang J, et al. Clinical and microbiological characteristics of cryptococcosis at an university hospital in China from 2013 to 2017. Braz J Infect Dis. 2020;24(1):7–12.

    Article  PubMed  Google Scholar 

  58. Park SH, Kim M, Joo SI, et al. Molecular epidemiology of clinical Cryptococcus neoformans isolates in Seoul. Korea Mycobiol. 2014;42(1):73–8.

    Article  CAS  Google Scholar 

  59. Dou HT, Xu YC, Wang HZ, et al. Molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii in China between 2007 and 2013 using multilocus sequence typing and the DiversiLab system. Eur J Clin Microbiol Infect Dis. 2015;34(4):753–62.

    Article  PubMed  Google Scholar 

  60. Cuomo CA, Rhodes J, Desjardins CA. Advances in Cryptococcus genomics: insights into the evolution of pathogenesis. Mem Inst Oswaldo Cruz. 2018;113(7):e170473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Beale MA, Sabiiti W, Robertson EJ, et al. Genotypic diversity is associated with clinical outcome and phenotype in cryptococcal meningitis across Southern Africa. PLoS Negl Trop Dis. 2015;9(6):e0003847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Engelthaler DM, Hicks ND, Gillece JD, et al. Cryptococcus gattii in North American Pacific Northwest: whole-population genome analysis provides insights into species evolution and dispersal. MBio. 2014;5(4):e01464–e1514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Samarasinghe H, Aceituno-Caicedo D, Cogliati M, et al. Genetic factors and genotype-environment interactions contribute to variation in melanin production in the fungal pathogen Cryptococcus neoformans. Sci Rep. 2018;8(1):9824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant awarded by Navamindradhiraj University Research Fund (Grant Number worjor/sornorthor.26/2562) to TW, CT and AH. We thank Faculty of Medicine Vajira Hospital for the English editing supported and edited by the ENAGO company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuphong Thongnak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Statement

The Ethical Review Board of the Faculty of Medicine, Vajira Hospital, Navamindradhiraj approved the study (COA119/61).

Additional information

Handling Editor: Ferry Hagen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 661 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wongsuk, T., Homkaew, A., Faksri, K. et al. Multi-locus Sequence Typing and Whole Genome Sequence Analysis of Cryptococcus neoformans Isolated from Clinical Specimens in Vajira Hospital, Bangkok, Thailand. Mycopathologia 185, 503–514 (2020). https://doi.org/10.1007/s11046-020-00456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-020-00456-7

Keywords

Navigation