Skip to main content

Advertisement

Log in

Evaluation of an Explanted Porcine Skin Model to Investigate Infection with the Dermatophyte Trichophyton rubrum

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Dermatophytosis is a fungal infection of skin, hair and nails, and the most frequently found causative agent is Trichophyton rubrum. The disease is very common and often recurring, and it is therefore difficult to eradicate. To develop and test novel treatments, infection models that are representative of the infection process are desirable. Several infection models have been developed, including the use of cultured cells, isolated corneocytes, explanted human skin or reconstituted human epidermis. However, these have various disadvantages, ranging from not being an accurate reflection of the site of infection, as is the case with, for example, cultured cells, to being difficult to scale up or having ethical issues (e.g., explanted human skin). We therefore sought to develop an infection model using explanted porcine skin, which is low cost and ethically neutral. We show that in our model, fungal growth is dependent on the presence of skin, and adherence of conidia is time-dependent with maximum adherence observed after ~ 2 h. Scanning electron microscopy suggested the production of fibril-like material that links conidia to each other and to skin. Prolonged incubation of infected skin leads to luxurious growth and invasion of the dermis, which is not surprising as the skin is not maintained in conditions to keep the tissue alive, and therefore is likely to lack an active immune system that would limit fungal growth. Therefore, the model developed seems useful to study the early stages of infection. Furthermore, we demonstrate that the model can be used to test novel treatment regimens for tinea infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51(Suppl 4):2–15.

    PubMed  Google Scholar 

  2. Elewski BE, Tosti A. Risk factors and comorbidities for onychomycosis: implications for treatment with topical therapy. J Clin Aesthet Dermatol. 2015;8(11):38–42.

    PubMed  PubMed Central  Google Scholar 

  3. Gupta AK, Humke S. The prevalence and management of onychomycosis in diabetic patients. Eur J Dermatol. 2000;10(5):379–84.

    CAS  PubMed  Google Scholar 

  4. Rouzaud C, Hay R, Chosidow O, Dupin N, Puel A, Lortholary O, et al. Severe dermatophytosis and acquired or innate immunodeficiency: a review. J Fungi (Basel). 2015;2(1):4.

    Google Scholar 

  5. Nenoff P, Kruger C, Ginter-Hanselmayer G, Tietz HJ. Mycology—an update. Part 1: dermatomycoses: causative agents, epidemiology and pathogenesis. J Dtsch Dermatol Ges. 2014;12(3):188–209.

    PubMed  Google Scholar 

  6. Yazdanparast SA, Barton RC. Arthroconidia production in Trichophyton rubrum and a new ex vivo model of onychomycosis. J Med Microbiol. 2006;55(Pt 11):1577–81.

    CAS  PubMed  Google Scholar 

  7. Aljabre SH, Richardson MD, Scott EM, Rashid A, Shankland GS. Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis. Clin Exp Dermatol. 1993;18(3):231–5.

    CAS  PubMed  Google Scholar 

  8. Zurita J, Hay JH. Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dermatol. 1987;89(5):529–34.

    CAS  PubMed  Google Scholar 

  9. Smijs TG, Bouwstra JA, Schuitmaker HJ, Talebi M, Pavel S. A novel ex vivo skin model to study the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment in different growth phases. J Antimicrob Chemother. 2007;59(3):433–40.

    CAS  PubMed  Google Scholar 

  10. Duek L, Kaufman G, Ulman Y, Berdicevsky I. The pathogenesis of dermatophyte infections in human skin sections. J Infect. 2004;48(2):175–80.

    CAS  PubMed  Google Scholar 

  11. Băguţ ET, Baldo A, Mathy A, Cambier L, Antoine N, Cozma V, et al. Subtilisin Sub3 is involved in adherence of Microsporum canis to human and animal epidermis. Vet Microbiol. 2012;160(3–4):413–9.

    PubMed  Google Scholar 

  12. Kaufman G, Horwitz BA, Duek L, Ullman Y, Berdicevsky I. Infection stages of the dermatophyte pathogen Trichophyton: microscopic characterization and proteolytic enzymes. Med Mycol. 2007;45(2):149–55.

    CAS  PubMed  Google Scholar 

  13. Esquenazi D, Souza W, Sales Alviano C, Rozental S. The role of surface carbohydrates on the interaction of microconidia of Trichophyton mentagrophytes with epithelial cells. FEMS Immunol Med Microbiol. 2003;35(2):113–23.

    CAS  PubMed  Google Scholar 

  14. Bitencourt TA, Macedo C, Franco ME, Assis AF, Komoto TT, Stehling EG, et al. Transcription profile of Trichophyton rubrum conidia grown on keratin reveals the induction of an adhesin-like protein gene with a tandem repeat pattern. BMC Genom. 2016;17:249.

    Google Scholar 

  15. Faway E, Cambier L, Mignon B, Poumay Y, Lambert de Rouvroit C. Modeling dermatophytosis in reconstructed human epidermis: a new tool to study infection mechanisms and to test antifungal agents. Med Mycol. 2017;55(5):485–94.

    CAS  PubMed  Google Scholar 

  16. Zghoul N, Fuchs R, Lehr CM, Schaefer UF. Reconstructed skin equivalents for assessing percutaneous drug absorption from pharmaceutical formulations. Altex. 2001;18(2):103–6.

    CAS  PubMed  Google Scholar 

  17. Schmook FP, Meingassner JG, Billich A. Comparison of human skin or epidermis models with human and animal skin in in vitro percutaneous absorption. Int J Pharm. 2001;215(1–2):51–6.

    CAS  PubMed  Google Scholar 

  18. Alhusein N, Blagbrough IS, Beeton ML, Bolhuis A, De Bank PA. Electrospun Zein/PCL fibrous matrices release tetracycline in a controlled manner, killing Staphylococcus aureus both in biofilms and ex vivo on pig skin, and are compatible with human skin cells. Pharm Res. 2016;33(1):237–46.

    CAS  PubMed  Google Scholar 

  19. Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Pig ear skin ex vivo as a model for in vivo dermatopharmacokinetic studies in man. Pharm Res. 2006;23(8):1850–6.

    CAS  PubMed  Google Scholar 

  20. Ho FKH, Delgado-Charro B, Bolhuis A. A microtiter plate-based quantitative method to monitor the growth rate of dermatophytes and test antifungal activity. J Microbiol Methods. 2019;165:105722.

    CAS  PubMed  Google Scholar 

  21. Nakamura A, Arimoto M, Takeuchi K, Fujii T. A rapid extraction procedure of human hair proteins and identification of phosphorylated species. Biol Pharm Bull. 2002;25:569–72.

    CAS  PubMed  Google Scholar 

  22. Bolhuis A, Koetje E, Dubois JY, Vehmaanpera J, Venema G, Bron S, et al. Did the mitochondrial processing peptidase evolve from a eubacterial regulator of gene expression? Mol Biol Evol. 2000;17:198–201.

    CAS  PubMed  Google Scholar 

  23. Yang Q, Phillips PL, Sampson EM, Progulske-Fox A, Jin S, Antonelli P, et al. Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms. Wound Repair Regen. 2013;21(5):704–14.

    PubMed  Google Scholar 

  24. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988;106(3):761–71.

    CAS  PubMed  Google Scholar 

  25. Vermout S, Tabart J, Baldo A, Mathy A, Losson B, Mignon B. Pathogenesis of dermatophytosis. Mycopathologia. 2008;166(5–6):267–75.

    PubMed  Google Scholar 

  26. Bommanan D, Potts RO, Guy RH. Examination of the effect of ethanol on human stratum corneum in vivo using infrared spectroscopy. J Control Release. 1991;16:299–304.

    Google Scholar 

  27. Kwak S, Brief E, Langlais D, Kitson N, Lafleur M, Thewalt J. Ethanol perturbs lipid organisation in models of stratum corneum membranes: an investigation combining differential scanning calorimetry, infrared and (2)H NMR spectroscopy. Biochem Biophys Acta. 2012;1818:1410–9.

    CAS  PubMed  Google Scholar 

  28. Petrova NL, Whittam A, MacDonald A, Ainarkar S, Donaldson AN, Bevans J, et al. Reliability of a novel thermal imaging system for temperature assessment of healthy feet. J Foot Ankle Res. 2018;11:22.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shilco P, Roitblat Y, Buchris N, Hanai J, Cohensedgh S, Frig-Levinson E, et al. Normative surface skin temperature changes due to blood redistribution: a prospective study. J Therm Biol. 2019;80:82–8.

    PubMed  Google Scholar 

  30. Summerfield A, Meurens M, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015;66:14–21.

    CAS  PubMed  Google Scholar 

  31. Jackson PGG, Cockcroft PD. Handbook of pig medicine. London: Saunders Elsevier; 2007.

    Google Scholar 

  32. Van Rooij P, Declerq J, Beguin H. Canine dermatophytosis caused by Trichophyton rubrum: an example of man-to-dog transmission. Mycoses. 2012;55:e15–7.

    PubMed  Google Scholar 

  33. Matos Baltazar L, Assis Santos D. Perspective of animal models of dermatophytosis caused by Trichophyton rubrum. Virulence. 2015;6:372–5.

    Google Scholar 

  34. Apodaca G, McKerrow JH. Regulation of Trichophyton rubrum proteolytic activity. Infect Immun. 1989;57(10):3081–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Costa-Orlandi CB, Sardi JC, Santos CT, Fusco-Almeida AM, Mendes-Giannini MJ. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. Biofouling. 2014;30(6):719–27.

    CAS  PubMed  Google Scholar 

  36. Liu T, Zhang Q, Wang L, Yu L, Leng W, Yang J, et al. The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination. BMC Genom. 2007;8:100.

    Google Scholar 

  37. Smith KJ, Welsh M, Skelton H. Trichophyton rubrum showing deep dermal invasion directly from the epidermis in immunosuppressed patients. Br J Dermatol. 2001;145(2):344–8.

    CAS  PubMed  Google Scholar 

  38. Kim SH, Jo IH, Kang J, Joo SY, Choi JH. Dermatophyte abscesses caused by Trichophyton rubrum in a patient without pre-existing superficial dermatophytosis: a case report. BMC Infect Dis. 2016;16:298.

    PubMed  PubMed Central  Google Scholar 

  39. Nir-Paz R, Elinav H, Pierard GE, Walker D, Maly A, Shapiro M, et al. Deep infection by Trichophyton rubrum in an immunocompromised patient. J Clin Microbiol. 2003;41(11):5298–301.

    PubMed  PubMed Central  Google Scholar 

  40. Ogawa H, Summerbell RC, Clemons KV, Koga T, Ran YP, Rashid A, et al. Dermatophytes and host defence in cutaneous mycoses. Med Mycol. 1998;36(Suppl 1):166–73.

    PubMed  Google Scholar 

  41. Corzo-Leon DE, Munro CA, MacCallum DM. An ex vivo human skin model to study superficial fungal infections. Front Microbiol. 2019;10:1172.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Bolhuis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Ethical approval for the study was obtained from the relevant ethics committees. Porcine skin was collected from a local slaughterhouse, and no experimental procedures were performed on live animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: J.-P. Bouchara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig.

 1. Proteolytic activity in the culture supernatant.T. rubrum was grown for 10 days in rich medium (PDB) or minimal salts medium (MS) in the presence or absence of 0.2% keratin (± ker). Proteolytic activity, which is expressed in arbitrary units (AU), was then determined using azocasein. Error bars indicate standard deviation of the mean from three independent experiments. (TIFF 3460 kb)

Supplementary Fig.

 2. Skin samples were treated on each side with chlorine gas with the times indicated. Specimens were then fixed, cryoprotected, and stained with haematoxylin/eosin, and imaged using light microscopy. The scale bars indicated are 50 µm. (TIFF 18199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, F.KH., Delgado-Charro, M.B. & Bolhuis, A. Evaluation of an Explanted Porcine Skin Model to Investigate Infection with the Dermatophyte Trichophyton rubrum. Mycopathologia 185, 233–243 (2020). https://doi.org/10.1007/s11046-020-00438-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-020-00438-9

Keywords

Navigation