Contemporary Gene Flow is a Major Force Shaping the Aspergillus fumigatus Population in Auckland, New Zealand

Abstract

Aspergillus fumigatus is a globally distributed opportunistic fungal pathogen capable of causing highly lethal invasive aspergillosis in immunocompromised individuals. Recent studies have indicated that the global population consists of multiple, divergent genetic clusters that are geographically broadly distributed. However, most of the analyzed samples have come from continental Eurasia and the Americas where the effects of ancient versus recent factors are difficult to distinguish. Here, we investigated environmental A. fumigatus isolates from Auckland, New Zealand, a geographically isolated population, and compared them with those from other parts of the world to determine the relative roles of historical differentiation and recent gene flow in shaping A. fumigatus populations. Our data suggest that the Auckland A. fumigatus population contains both unique indigenous genetic elements as well as genetic elements that are similar to those from other regions such as Europe, Africa, and North America. Though the hypothesis of random recombination was rejected, we found abundant evidence for phylogenetic incompatibility and recombination within the Auckland A. fumigatus population. Additionally, susceptibility testing identified two triazole-resistant strains, one of which contained the globally distributed mutation TR34/L98H in the cyp51A gene. Our results suggest that contemporary gene flow, likely due to anthropogenic factors, is a major force shaping the New Zealand A. fumigatus population.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

All data described in the study are presented in the manuscript and available from the authors.

References

  1. 1.

    Kwon-Chung KJ, Sugui JA. Aspergillus fumigatus—what makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 2013;9:e1003743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Latgé JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12:310–50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Rhodes JC. Aspergillus fumigatus: growth and virulence. Med Mycol. 2006;44:77–81.

    Article  CAS  Google Scholar 

  4. 4.

    Brakhage AA, Langfelder K. Menacing mold: the molecular biology of Aspergillus fumigatus. Annu Rev Microbiol. 2002;56:433–55.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Dagenais TRT, Keller NP. Pathogenesis of Aspergillus fumigatus in invasive Aspergillosis. Clin Microbiol Rev. 2009;22:447–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Seufert R, Sedlacek L, Kahl B, Hogardt M, Hamprecht A, Haase G, et al. Prevalence and characterization of azole-resistant Aspergillus fumigatus in patients with cystic fibrosis: a prospective multicentre study in Germany. J Antimicrob Chemother. 2018;73(8):2047–53.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Shah A, Panjabi C. Allergic bronchopulmonary aspergillosis: a perplexing clinical entity. Allergy Asthma Immunol Res. 2016;8:282–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Maschmeyer G, Haas A, Cornely OA. Invasive aspergillosis. Drugs. 2007;67:1567–601.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Schwartz S, Ruhnke M, Ribaud P, Corey L, Driscoll T, Cornely OA, et al. Improved outcome in central nervous system aspergillosis, using voriconazole treatment. Blood. 2005;106:2641–5.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Dockrell DH. Salvage therapy for invasive aspergillosis. J Antimicrob Chemother. 2008;61:41–4.

    Article  CAS  Google Scholar 

  11. 11.

    Venanzi E, Martín-Dávila P, López J, Maiz L, Gómez-García de la Pedrosa E, Gioia F, Escudero R, Filigheddu E, Moreno S, Fortún J. Aerosolized lipid amphotericin B for complementary therapy and/or secondary prophylaxis in patients with invasive pulmonary aspergillosis: a single-center experience. Mycopathologia. 2019;184:239–50.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Güngör Ö, Sampaio-Maia B, Amorim A, Araujo R, Erturan Z. Determination of azole resistance and TR34/L98H mutations in isolates of Aspergillus section Fumigati from Turkish cystic fibrosis patients. Mycopathologia. 2018;183:913–20.

    Article  PubMed  Google Scholar 

  13. 13.

    Chang H, Ashu E, Sharma C, Kathuria S, Chowdhary A, Xu J. Diversity and origins of Indian multi-triazole resistant strains of Aspergillus fumigatus. Mycoses. 2016;59:450–66.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Ashu EE, Hagen F, Chowdhary A, Meis JF, Xu J. Global population genetic analysis of Aspergillus fumigatus. mSphere. 2017;2:e00019-17.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Ashu EE, Korfanty GA, Xu J. Evidence of unique genetic diversity in Aspergillus fumigatus isolates from Cameroon. Mycoses. 2017;60:739–48.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Snelders E, Huis In’t Veld RAG, Rijs AJMM, Kema GHJ, Melchers WJG, Verweij PE. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol. 2009;75:4053–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Chowdhary A, Randhawa HS, Sundar G, Kathuria S, Prakash A, Khan Z, et al. In vitro antifungal susceptibility profiles and genotypes of 308 clinical and environmental isolates of Cryptococcus neoformans var. grubii and Cryptococcus gattii serotype B from north-western India. J Med Microbiol. 2011;60:961–7.

    Article  PubMed  Google Scholar 

  18. 18.

    Badali H, Vaezi A, Haghani I, Yazdanparast SA, Hedayati MT, Mousavi B, et al. Environmental study of azole-resistant Aspergillus fumigatus with TR34/L98H mutations in the cyp51 A gene in Iran. Mycoses. 2013;56:659–63.

    Article  CAS  Google Scholar 

  19. 19.

    de Valk HA, Meis JFGM, Curfs IM, Muehlethaler K, Mouton JW, Klaassen CHW. Use of a novel panel of nine short tandem repeats for exact and high-resolution fingerprinting of Aspergillus fumigatus isolates. J Clin Microbiol. 2005;43:4112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wu J, Guo H, Yi G, Zhou L, He X, Huang X, et al. Prevalent drug resistance among oral yeasts from asymptomatic patients in Hainan, China. Mycopathologia. 2014;177:299–307.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Ashu E, Samarasinghe H, You M, Pum N, Korfanty GA, Yamamura D, et al. Widespread amphotericin B-resistant strains of Aspergillus fumigatus in Hamilton, Canada. Infect Drug Resist. 2018;11:1549–55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Chowdhary A, Kathuria S, Xu J, Sharma C, Sundar G, Singh PK, et al. Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR34/L98H mutations in the cyp51A gene in India. PLoS ONE. 2012;7:e52871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Verweij PE, Mellado E, Melchers WJG. Multiple-triazole-resistant Aspergillosis. N Engl J Med. 2007;356:1481–3.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    van der Linden JWM, Snelders E, Kampinga GA, Rijnders BJA, Mattsson E, Debets-Ossenkopp YJ, et al. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg Infect Dis. 2011;17:1846–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Bueid A, Howard SJ, Moore CB, Richardson MD, Harrison E, Bowyer P, et al. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J Antimicrob Chemother. 2010;65:2116–8.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Lee HJ, Cho SY, Lee DG, Park C, Chun HS, Park YJ. TR34/L98H mutation in CYP51A gene in Aspergillus fumigatus clinical isolates during Posaconazole Prophylaxis: first case in Korea. Mycopathologia. 2018;183:731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    International Travel and Migration—ITM. International visitor arrivals to New Zealand: April 2018|Stats NZ [Internet]. 2018.

  28. 28.

    Paoletti M, Rydholm C, Schwier EU, Anderson MJ, Szakacs G, Lutzoni F, et al. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol. 2005;15:1242–8.

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Rex JH, Alexander BD, Andes D, Arthington-Skaggs B, Brown SD, Chaturveli V, et al. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, 2nd edn. 2008. CLSI document M38-A2. Clinical and Laboratory Standards Institute, Pennsylvania

  30. 30.

    Peakall R, Smouse PE. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–95.

    Article  Google Scholar 

  31. 31.

    Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28:2537–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Agapow P-M, Burt A. Indices of multilocus linkage disequilibrium. Mol Ecol Notes. 2001;1:101–2.

    Article  CAS  Google Scholar 

  35. 35.

    Ashu EE, Kim GY, Roy-Gayos P, Dong K, Forsythe A, Giglio V, et al. Limited evidence of fungicide-driven triazole-resistant Aspergillus fumigatus in Hamilton, Canada. Can J Microbiol. 2018;64:119–30.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Hua W, Vogan A, Xu J. Genotypic and phenotypic analyses of two “Isogenic” strains of the human fungal pathogen Cryptococcus neoformans var. neoformans. Mycopathologia. 2019;184:195–212.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Xu J, Kerrigan RW, Callac P, Horgen PA, Anderson JB. Genetic structure of natural populations of Agaricus bisporus, the commercial button mushroom. J Hered. 1997;88:482–8.

    Article  Google Scholar 

  38. 38.

    Imshenetsky AA, Lysenko SV, Kazakov GA. Upper boundary of the biosphere. Appl Environ Microbiol. 1978;35:1.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wolf FT. The microbiology of the upper air. Bull Torrey Bot Club. 1943;70:1–14.

    Article  Google Scholar 

  40. 40.

    Lu J, Vecchi GA, Reichler T. Expansion of the Hadley cell under global warming. Geophys Res Lett. 2007;34:L06805.

    Google Scholar 

  41. 41.

    Held IM, Suarez MJ, Held IM, Suarez MJ. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull Am Meteorol Soc. 1994;75:1825–30.

    Article  Google Scholar 

  42. 42.

    Walker CC, Schneider T. Response of idealized Hadley circulations to seasonally varying heating. Geophys Res Lett. 2005;32:L06813.

    Article  CAS  Google Scholar 

  43. 43.

    Böhner J, Antonić O. Chapter 8 land-surface parameters specific to topo-climatology. Dev Soil Sci. 2009;33:195–226.

    Google Scholar 

  44. 44.

    Kousky VE, Kagano MT, Cavalcanti IFA. A review of the southern oscillation: oceanic-atmospheric circulation changes and related rainfall anomalies. Tellus A. 1984;36A:490–504.

    Article  Google Scholar 

  45. 45.

    Knox BP, Blachowicz A, Palmer JM, Romsdahl J, Huttenlocher A, Wang CCC, et al. Characterization of Aspergillus fumigatus isolates from air and surfaces of the international space station. mSphere. 2016;1:e00227-16.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Jeanvoine A, Rocchi S, Reboux G, Crini N, Crini G, Millon L. Azole-resistant Aspergillus fumigatus in sawmills of Eastern France. J Appl Microbiol. 2017;123:172–84.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Bromley MJ, van Muijlwijk G, Fraczek MG, Robson G, Verweij PE, Denning DW, et al. Occurrence of azole-resistant species of Aspergillus in the UK environment. J Glob Antimicrob Resist. 2014;2:276–9.

    Article  PubMed  Google Scholar 

  48. 48.

    Liu M, Zeng R, Zhang L, Li D, Lv G, Shen Y, et al. Multiple cyp51A-based mechanisms identified in azole-resistant isolates of Aspergillus fumigatus from China. Antimicrob Agents Chemother. 2015;59:4321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Riat A, Plojoux J, Gindro K, Schrenzel J, Sanglard D. Azole resistance of environmental and clinical Aspergillus fumigatus isolates from Switzerland. Antimicrob Agents Chemother. 2018;62(4):e02088-17.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bader O, Tünnermann J, Dudakova A, Tangwattanachuleeporn M, Weig M, Groß U, et al. Environmental isolates of azole-resistant Aspergillus fumigatus in Germany. Antimicrob Agents Chemother. 2015;59:4356–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Prigitano A, Esposto MC, Biffi A, De Lorenzis G, Favuzzi V, Koncan R, et al. Triazole resistance in Aspergillus fumigatus isolates from patients with cystic fibrosis in Italy. J Cyst Fibros. 2017;16:64–9.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Karthaus M. Prophylaxis and treatment of invasive aspergillosis with voriconazole, posaconazole and caspofungin: review of the literature. Eur J Med Res. 2011;16:145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Forsythe A, Giglio V, Asa J, Xu J. Phenotypic divergence along geographic gradients reveals potential for rapid adaptation of the White-nose Syndrome pathogen, Pseudogymnoascus destructans, in North America. Appl Environ Microbiol. 2018;84(16):e00863-18.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Natural Sciences and Engineering Research Council (NSERC) (Grant No. CRDPJ 474638-14) of Canada and by McMaster University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianping Xu.

Ethics declarations

Ethical Approval

We confirm that all methods in this study were carried out in accordance with relevant guidelines and regulations. In addition, all experimental protocols were approved by McMaster University. No human nor animal was used as subject in this research.

Conflict of interest

The authors declare that we have no conflict of interest or other interests that might be perceived to influence the results and/or discussion reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Vishnu Chaturvedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 kb)

Supplementary material 2 (PDF 839 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korfanty, G.A., Teng, L., Pum, N. et al. Contemporary Gene Flow is a Major Force Shaping the Aspergillus fumigatus Population in Auckland, New Zealand. Mycopathologia 184, 479–492 (2019). https://doi.org/10.1007/s11046-019-00361-8

Download citation

Keywords

  • Microsatellite genotyping
  • Triazole resistance
  • Cyp51A gene
  • Recombination
  • Gene flow
  • Global population structure