Skip to main content

Putting It All Together to Understand the Role of Malassezia spp. in Dandruff Etiology


Dandruff is a common scalp condition causing both a discomfort and an undesired social image. Various studies dating from early 1900s have investigated the condition, but understanding of underlying mechanisms and etiology of the condition is still in its infancy. Formation of dandruff is a common but complex event which has been associated with numerous causal factors. Physiological conditions such as pH, water content, or sebum secretion are some of the host-related factors. An imbalance between these factors can disturb the physiological equilibrium of the scalp that can lead to dandruff formation. However, severity of the condition is strongly related to the lipophilic yeast of the skin microbiota, Malassezia spp. On the other hand, there are recent publications highlighting the role of other scalp microbiota members on dandruff formation. This review investigates the processes leading to the formation of dandruff to provide an etiological description of the condition, with a focus on Malassezia spp.

This is a preview of subscription content, access via your institution.

Fig. 1

(Reprinted with permission from Turner et al. [7])

Fig. 2


  1. 1.

    Gupta AK, Batra R, Bluhm R, Boekhout T, Dawson TL. Skin diseases associated with Malassezia species. J Am Acad Dermatol. 2004;51:785–98.

    Article  Google Scholar 

  2. 2.

    Manuel F, Ranganathan S. A new postulate on two stages of dandruff: a clinical perspective. Int J Trichol. [Internet]. India: Medknow Publications; 2011;3:3–6. Available from

  3. 3.

    Warner RR, Schwartz JR, Boissy Y, Dawson TL. Dandruff has an altered stratum corneum ultrastructure that is improved with zinc pyrithione shampoo. J Am Acad Dermatol. 2001;45:897–903.

    CAS  Article  Google Scholar 

  4. 4.

    Chen TA, Hill PB. The biology of Malassezia organisms and their ability to induce immune responses and skin disease. Vet Dermatol. 2005;16:4–26.

    Article  Google Scholar 

  5. 5.

    White TC, Findley K, Dawson TL, Scheynius A, Boekhout T, Cuomo CA, et al. Fungi on the skin: dermatophytes and malassezia. Cold Spring Harb Perspect Med. 2014;4:a019802.

    Article  Google Scholar 

  6. 6.

    Rosenthal D, Margesson LJ. A randomized, double-blind, placebo-controlled trial of ketoconazole 2% shampoo versus selenium sulfide 2.5% shampoo in the treatment of moderate to severe dandruff. J Am Acad Dermatol. [Internet]. American Academy of Dermatology, Inc.; 1993;29:1008–12. Available from

  7. 7.

    Turner GA, Hoptroff M, Harding CR. Stratum corneum dysfunction in dandruff. Int J Cosmet Sci. 2012;34:298–306.

    CAS  Article  Google Scholar 

  8. 8.

    Schwartz JR, DeAngelis YM, Dawson Jr. TL. Dandruff and seborrheic dermatitis: a head scratcher. Pract Mod Hair Sci. 2012;562.

  9. 9.

    Xu Z, Wang Z, Yuan C, Liu X, Yang F, Wang T, et al. Dandruff is associated with the conjoined interactions between host and microorganisms. Sci Rep. [Internet]. Nature Publishing Group; 2016;6:24877. Available from

  10. 10.

    Clavaud C, Jourdain R, Bar-Hen A, Tichit M, Bouchier C, Pouradier F, et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One. 2013;8.

  11. 11.

    Pochi PE, Strauss JS. Studies on the sebaceous glands in acne and endocrine disorders. Bull N Y Acad Med. 1977;53:359–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Rogers J, Harding C, Mayo A, Banks J. Stratum corneum lipids: the effect of aging and seasons. Arch Dermatol Res. 1996;288:765–70.

    CAS  Article  Google Scholar 

  13. 13.

    Jang SJ, Lim SH, Ko JH, Oh BH, Kim SM, Song YC, et al. The investigation on the distribution of Malassezia yeasts on the normal Korean skin by 26S rDNA PCR-RFLP. Ann Dermatol. 2009;21:18–26.

    CAS  Article  Google Scholar 

  14. 14.

    Paulino LC, Tseng CH, Blaser MJ. Analysis of Malassezia microbiota in healthy superficial human skin and in psoriatic lesions by multiplex real-time PCR. FEMS Yeast Res. 2008;8:460–71.

    CAS  Article  Google Scholar 

  15. 15.

    Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A. The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev. 2012;25:106–41.

    Article  Google Scholar 

  16. 16.

    Ro BI, Dawson TL. The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. J Investig Dermatol Symp Proc. [Internet]. Elsevier Masson SAS; 2005;10:194–7. Available from

  17. 17.

    Park M, Cho Y-J, Lee YW, Jung WH. Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses. Germany. 2017;60:188–97.

    CAS  Article  Google Scholar 

  18. 18.

    DeAngelis YM, Gemmer CM, Kaczvinsky JR, Kenneally DC, Schwartz JR, Dawson TL. Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. J Investig Dermatol Symp Proc. [Internet]. Elsevier Masson SAS; 2005;10:295–7. Available from

  19. 19.

    Mcginley KJ, Leyden JJ, Marples RR, Path MRC, Kligman AM. Quantitative microbiology of the scalp in non-dandruff, dandruff, and seborrheic dermatitis. J Invest Dermatol. 1975;64:401–5.

    CAS  Article  Google Scholar 

  20. 20.

    Adamski Z, Mycology M, Science M, Hospital P, Head SD. The treatment of dandruff of the scalp. 2006;49–56.

  21. 21.

    Marcon MJ, Powell DA. Human infections due to Malassezia spp. Clin Microbiol Rev. 1992;5:101–19.

    CAS  Article  Google Scholar 

  22. 22.

    Guillot J, Hadina S, Gueho E. The genus Malassezia: old facts and new concepts. Parassitologia. Italy. 2008;50:77–9.

    CAS  Google Scholar 

  23. 23.

    Sommer B, Overy DP, Kerr RG. Identification and characterization of lipases from Malassezia restricta, a causative agent of dandruff. FEMS Yeast Res. 2015;15:1–8.

    Article  Google Scholar 

  24. 24.

    Cafarchia C, Otranto D. The pathogenesis of Malassezia yeasts. Parassitologia. Italy. 2008;50:65–7.

    CAS  Google Scholar 

  25. 25.

    Hay RJ. Malassezia, dandruff and seborrhoeic dermatitis: an overview. Br J Dermatol. 2011;165:2–8.

    Article  Google Scholar 

  26. 26.

    Sampai ALSB, Mameri ACACA, Vargas TJDS, Ramos-e-Silva M, Nunes AP, Carneiro SCSDS, et al. Seborrheic dermatitis. An Bras Dermatol. 2011;86:1061–74.

    Article  Google Scholar 

  27. 27.

    Otomi Cho AT. Molecular characterization of the skin fungal microbiota in patients with seborrheic dermatitis. J Clin Exp Dermatol Res. [Internet]. 2014;5:5–8. Available from

  28. 28.

    Gupta AK, Kohli Y, Summerbell RC, Faergemann J. Quantitative culture of Malassezia species from different body sites of individuals with or without dermatoses. Med Mycol. [Internet]. 2001;39:243–51. Available from

  29. 29.

    Gaitanis G, Velegraki A, Alexopoulos EC, Chasapi V, Tsigonia A, Katsambas A. Distribution of Malassezia species in pityriasis versicolor and seborrhoeic dermatitis in Greece. Typing of the major pityriasis versicolor isolate M. globosa. Br J Dermatol. 2006;154:854–9.

    CAS  Article  Google Scholar 

  30. 30.

    Tajima M, Sugita T, Nishikawa A, Tsuboi R. Molecular analysis of Malassezia microflora in seborrheic dermatitis patients: comparison with other diseases and healthy subjects. J Invest Dermatol. 2008;128:345–51.

    CAS  Article  Google Scholar 

  31. 31.

    Prohic A, Jovovic Sadikovic T, Kuskunovic-Vlahovljak S, Baljic R. Distribution of Malassezia species in patients with different dermatological disorders and healthy individuals. Acta Dermatovenerol Croat. Croatia. 2016;24:274–81.

    Google Scholar 

  32. 32.

    Kamamoto CSL, Nishikaku AS, Gompertz OF, Melo AS, Hassun KM, Bagatin E. Cutaneous fungal microbiome: Malassezia yeasts in seborrheic dermatitis scalp in a randomized, comparative and therapeutic trial. Dermatoendocrinol. United States. 2017;9:1361573.

    Article  Google Scholar 

  33. 33.

    Park M, Cho YJ, Lee YW, Jung WH. Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses. 2017;60:188–97.

    CAS  Article  Google Scholar 

  34. 34.

    Wang L, Clavaud C, Bar-Hen A, Cui M, Gao J, Liu Y, et al. Characterization of the major bacterial-fungal populations colonizing dandruff scalps in Shanghai, China, shows microbial disequilibrium. Exp Dermatol. Denmark. 2015;24:398–400.

    Article  Google Scholar 

  35. 35.

    Czaika V, Nenoff P, Glöckner A, Fegeler W, Becker K, Schmalreck AF. Epidemiology and changes in patient-related factors from 1997 to 2009 in clinical yeast isolates related to dermatology, gynaecology, and paediatrics. Int J Microbiol. 2013;2013:2013.

    Article  Google Scholar 

  36. 36.

    Bulmer AC, Bulmer GS. The antifungal action of dandruff shampoos. Mycopathologia. 1999;147:63–5.

    CAS  Article  Google Scholar 

  37. 37.

    Angiolella L, Carradori S, Maccallini C, Giusiano G, Supuran CT. Targeting Malassezia species for novel synthetic and natural antidandruff agents. Curr Med Chem. Netherlands. 2017;24:2392–412.

    CAS  Google Scholar 

  38. 38.

    Rojas FD, Córdoba SB, de los Ángeles Sosa M, Zalazar LC, Fernández MS, Cattana ME, et al. Antifungal susceptibility testing of Malassezia yeast: comparison of two different methodologies. Mycoses. 2017;60:104–11.

    CAS  Article  Google Scholar 

  39. 39.

    Midgley G. The lipophilic yeasts: state of the art and prospects. Med Mycol. 2000;38:9–16.

    Article  Google Scholar 

  40. 40.

    Brunke S, Hube B. MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur. Microbiology. 2006;152:547–54.

    CAS  Article  Google Scholar 

  41. 41.

    Xu J, Saunders CW, Hu P, Grant RA, Boekhout T, Kuramae EE, et al. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci. [Internet]. 2007;104:18730–5. Available from

  42. 42.

    Dawson TL. Malassezia globosa and restricta: breakthrough understanding of the etiology and treatment of dandruff and seborrheic dermatitis through whole-genome analysis. J Investig Dermatol Symp Proc. [Internet]. Elsevier Masson SAS; 2007;12:15–9. Available from

  43. 43.

    Gordon James A, Abraham KH, Cox DS, Moore AE, Pople JE. Metabolic analysis of the cutaneous fungi Malassezia globosa and M. restricta for insights on scalp condition and dandruff. Int J Cosmet Sci. 2013;35:169–75.

    Article  Google Scholar 

  44. 44.

    Wu G, Zhao H, Li C, Rajapakse MP, Wong WC, Xu J, et al. Genus-wide comparative genomics of Malassezia Delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet. United States. 2015;11:e1005614.

    Article  Google Scholar 

  45. 45.

    DeAngelis YM, Saunders CW, Johnstone KR, Reeder NL, Coleman CG, Kaczvinsky JR, et al. Isolation and expression of a Malassezia globosa lipase gene, LIP1. J Invest Dermatol. [Internet]. 2007;127:2138–46. Available from

  46. 46.

    Juntachai W, Oura T, Kajiwara S. Purification and characterization of a secretory lipolytic enzyme, MgLIP2, from Malassezia globosa. Microbiology. 2011;157:3492–9.

    CAS  Article  Google Scholar 

  47. 47.

    Xu H, Lan DM, Yang B, Wang YH. Biochemical properties and structure analysis of a DAG-like lipase from Malassezia globosa. Int J Mol Sci. 2015;16:4865–79.

    CAS  Article  Google Scholar 

  48. 48.

    Juntachai W, Oura T, Murayama SY, Kajiwara S. The lipolytic enzymes activities of Malassezia species. Med Mycol. England. 2009;47:477–84.

    CAS  Article  Google Scholar 

  49. 49.

    Jourdain R, Moga A, Vingler P, El Rawadi C, Pouradier F, Souverain L, et al. Exploration of scalp surface lipids reveals squalene peroxide as a potential actor in dandruff condition. Arch Dermatol Res. Germany. 2016;308:153–63.

    CAS  Article  Google Scholar 

  50. 50.

    Gaitanis G, Velegraki A, Magiatis P, Pappas P, Bassukas ID. Could Malassezia yeasts be implicated in skin carcinogenesis through the production of aryl-hydrocarbon receptor ligands? Med Hypotheses. [Internet]. Elsevier Ltd; 2011;77:47–51. Available from

  51. 51.

    Magiatis P, Pappas P, Gaitanis G, Mexia N, Melliou E, Galanou M, et al. Malassezia yeasts produce a collection of exceptionally potent activators of the Ah (Dioxin) receptor detected in diseased human skin. J. Invest. Dermatol. [Internet]. 2013;133:2023–30. Available from

  52. 52.

    Gaitanis G, Magiatis P, Stathopoulou K, Bassukas ID, Alexopoulos EC, Velegraki A, et al. AhR ligands, malassezin, and indolo[3,2-b]carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis. J Invest Dermatol. [Internet]. 2008;128:1620–5. Available from

  53. 53.

    Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ, Goh A, et al. Skin commensal <em> Malassezia globosa </em> secreted protease attenuates <em> Staphylococcus aureus </em> biofilm formation. J Invest Dermatol. [Internet]. Elsevier; 2018; Available from

  54. 54.

    Triana S, de Cock H, Ohm RA, Danies G, Wösten HAB, Restrepo S, et al. Lipid metabolic versatility in Malassezia spp. yeasts studied through metabolic modeling. Front Microbiol. 2017;8:1–18.

    Article  Google Scholar 

  55. 55.

    Madison KC. Barrier function of the skin: “La Raison d’Être” of the epidermis. J Invest Dermatol. [Internet]. Elsevier Masson SAS; 2003;121:231–41. Available from

  56. 56.

    Sugarman JL. The epidermal barrier in atopic dermatitis. Semin Cutan Med Surg. 2008;27:108–14.

    CAS  Article  Google Scholar 

  57. 57.

    Danby S, Cork M. A new understanding of atopic dermatitis: the role of epidermal barrier dysfunction and subclinical inflammation. J Clin Dermatol. 2010;33–46.

  58. 58.

    Al-Saeed WY, Al-Dawood KM, Bukhari IA, Bahnassy AA. Risk factors and co-morbidity of skin disorders among female schoolchildren in Eastern Saudi Arabia. Invest Clin. Venezuela. 2007;48:199–212.

    Google Scholar 

  59. 59.

    Ranganathan S, Mukhopadhyay T. Dandruff: the most commercially exploited skin disease. Indian J Dermatol. India. 2010;55:130–4.

    CAS  Article  Google Scholar 

  60. 60.

    Misery L, Rahhali N, Duhamel A, Taieb C. Epidemiology of dandruff, scalp pruritus and associated symptoms. Acta Derm Venereol. 2013;93:80–1.

    Article  Google Scholar 

  61. 61.

    Chikakane K, Takahashi H. Measurement of skin pH and its significance in cutaneous diseases. Clin Dermatol. 1995;13:299–306.

    CAS  Article  Google Scholar 

  62. 62.

    Schmid MH, Korting HC. The concept of the acid mantle of the skin: its relevance for the choice of skin cleansers. Dermatology. 1995;191:276–80.

    CAS  Article  Google Scholar 

  63. 63.

    Ashbee R, Bignell EM, editors. The yeast handbook: pathogenic yeasts. Berlin: Springer; 2010.

  64. 64.

    Hay RJ, Midgley G. Introduction: Malassezia yeasts from a historical perspective. Pract: Malassezia Ski Sci Clin; 2010.

    Google Scholar 

  65. 65.

    Brasch J, Christophers E. Azelaic acid has antimycotic properties in vitro. Dermatology. Switzerland. 1993;186:55–8.

    CAS  Article  Google Scholar 

  66. 66.

    Wheeler ML, Limon JJ, Underhill DM. Immunity to commensal fungi: detente and disease. Annu Rev Pathol. United States. 2017;12:359–85.

    CAS  Article  Google Scholar 

  67. 67.

    Cafarchia C, Otranto D. Association between phospholipase production by Malassezia pachydermatis and skin lesions. J Clin Microbiol. 2004;42:4868–9.

    CAS  Article  Google Scholar 

  68. 68.

    Cafarchia C, Dell’Aquila ME, Capelli G, Minoia P, Otranto D. Role of beta-endorphin on phospholipase production in Malassezia pachydermatis in dogs: new insights into the pathogenesis of this yeast. Med Mycol. [Internet]. 2007;45:11–5. Available from

  69. 69.

    Honnavar P, Chakrabarti A, Prasad GS, Singh P, Dogra S, Rudramurthy SM. Beta-Endorphin enhances the phospholipase activity of the dandruff causing fungi Malassezia globosa and Malassezia restricta. Med Mycol. England. 2017;55:150–4.

    CAS  Article  Google Scholar 

  70. 70.

    Bigliardi-Qi M, Eberle AN, Büchner S, Rufli T, Bigliardi-Qi M. Beta-endorphin stimulates cytokeratin 16 expression and downregulates Mu-opiate receptor expression in human epidermis. J Invest Dermatol. 2000;114:527–32.

    CAS  Article  Google Scholar 

  71. 71.

    Leyden JJ, McGinley KJ, Kligman AM. Role of microorganisms in dandruff. Arch Dermatol. [Internet]. 1976;112:333–8. Available from

Download references

Author information




YM and DG have contributed in acquisition of data and drafting the manuscript. MG have conceived the presented idea and contributed in drafting and finalising the manuscript.

Corresponding author

Correspondence to Mümtaz Güran.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report.

Additional information

Handling Editor: Vishnu Chaturvedi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meray, Y., Gençalp, D. & Güran, M. Putting It All Together to Understand the Role of Malassezia spp. in Dandruff Etiology. Mycopathologia 183, 893–903 (2018).

Download citation


  • Dandruff
  • Malassezia
  • Lipase
  • Scalp
  • Microbiota