Skip to main content
Log in

Culture Supernatants of Lactobacillus gasseri and L. crispatus Inhibit Candida albicans Biofilm Formation and Adhesion to HeLa Cells

  • Original Paper
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Purpose

Vulvovaginal candidiasis (VVC) is a common superficial infection of the vaginal mucous membranes caused by the fungus Candida albicans. The aim of this study was to assess the mechanisms underlying the inhibitory effects of the culture supernatants of Lactobacillus gasseri and L. crispatus, the predominant microbiota in Asian healthy women, on C. albicans biofilm formation. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was also investigated.

Methods

Candida albicans biofilm was formed on polystyrene flat-bottomed 96-well plates, and the inhibitory effects on the initial colonization and maturation phases were determined using the XTT reduction assay. The expression levels of biofilm formation-associated genes (HWP1, ECE1, ALS3, BCR1, EFG1, TEC1, and CPH1) were determined by reverse transcription quantitative polymerase chain reaction. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was evaluated by enumerating viable C. albicans cells.

Results

The culture supernatants of both Lactobacillus species inhibited the initial colonization and maturation of C. albicans biofilm. The expression levels of all biofilm formation-related genes were downregulated in the presence of Lactobacillus culture supernatant. The culture supernatant also inhibited C. albicans adhesion to HeLa cells.

Conclusion

The culture supernatants of L. gasseri and L. crispatus inhibited C. albicans biofilm formation by downregulating biofilm formation-related genes and C. albicans adhesion to HeLa cells. These findings support the notion that Lactobacillus metabolites may be useful alternatives to antifungal drugs for the management of VVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aguin TJ, Sobel JD. Vulvovaginal candidiasis in pregnancy. Curr Infect Dis Rep. 2015;17:462. https://doi.org/10.1007/s11908-015-0462-0.

    Article  PubMed  CAS  Google Scholar 

  2. Falagas ME, Betsi GI, Athanasiou S. Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. J Antimicrob Chemother. 2006;58:266–72. https://doi.org/10.1093/jac/dkl246.

    Article  PubMed  CAS  Google Scholar 

  3. Chew SY, Cheah YK, Seow HF, Sandai D, Than LT. In vitro modulation of probiotic bacteria on the biofilm of Candida glabrata. Anaerobe. 2015;34:132–8. https://doi.org/10.1016/j.anaerobe.2015.05.009.

    Article  PubMed  CAS  Google Scholar 

  4. Zhou X, Westman R, Hickey R, Hansmann MA, Kennedy C, Osborn TW, Forney LJ. Vaginal microbiota of women with frequent vulvovaginal candidiasis. Infect Immun. 2009;77:4130–5. https://doi.org/10.1128/IAI.00436-09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Biswas S, Van Dijck P, Datta A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev. 2007;71:348–76. https://doi.org/10.1128/MMBR.00009-06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Midkiff J, Borochoff-Porte N, White D, Johnson DI. Small molecule inhibitors of the Candida albicans budded-to-hyphal transition act through multiple signaling pathways. PLoS ONE. 2011;6:e25395. https://doi.org/10.1371/journal.pone.0025395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011;9:737–48. https://doi.org/10.1038/nrmicro2636.

    Article  PubMed  CAS  Google Scholar 

  8. Matsubara VH, Wang Y, Bandara HM, Mayer MP, Samaranayake LP. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol. 2016;100:6415–26. https://doi.org/10.1007/s00253-016-7527-3.

    Article  PubMed  CAS  Google Scholar 

  9. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108:4680–7. https://doi.org/10.1073/pnas.1002611107.

    Article  PubMed  Google Scholar 

  10. Anderson BL, Mendez-Figueroa H, Dahlke JD, Raker C, Hillier SL, Cu-Uvin S. Pregnancy-induced changes in immune protection of the genital tract: defining normal. Am J Obstet Gynecol. 2013;208:321.e1-9. https://doi.org/10.1016/j.ajog.2013.01.014.

    Article  PubMed  CAS  Google Scholar 

  11. Liu MB, Xu SR, He Y, Deng GH, Sheng HF, Huang XM, Ouyang CY, Zhou HW. Diverse vaginal microbiomes in reproductive-age women with vulvovaginal candidiasis. PLoS ONE. 2013;8:e79812. https://doi.org/10.1371/journal.pone.0079812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Morales DK, Hogan DA. Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog. 2010;6:e1000886. https://doi.org/10.1371/journal.ppat.1000886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ribeiro FC, de Barros PP, Rossoni RD, Junqueira JC, Jorge AO. Lactobacillus rhamnosus inhibits Candida albicans virulence factors in vitro modulates immune system in Galleria mellonella. J Appl Microbiol. 2017;122:201–11. https://doi.org/10.1111/jam.13324.

    Article  PubMed  CAS  Google Scholar 

  14. Nett JE, Cain MT, Crawford K, Andes DR. Optimizing a Candida biofilm microtiter plate model for measurement of antifungal susceptibility by tetrazolium salt assay. J Clin Microbiol. 2011;49:1426–33. https://doi.org/10.1128/JCM.02273-10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kurakado S, Takatori K, Sugita T. Minocycline inhibits the Candida albicans budded-to-hyphal-form transition and biofilm formation. Jpn J Infect Dis. 2017;70:490–4. https://doi.org/10.7883/yoken.JJID.2016.369.

    Article  PubMed  Google Scholar 

  16. Wang S, Wang Q, Yang E, Yan L, Li T, Zhuang H. Antimicrobial compounds produced by vaginal Lactobacillus crispatus are able to strongly inhibit Candida albicans growth, hyphal formation and regulate virulence-related gene expressions. Front Microbiol. 2017;8:564. https://doi.org/10.3389/fmicb.2017.00564.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Coman MM, Verdenelli MC, Cecchini C, Silvi S, Orpianesi C, Caspani M, Mondello F, Cresci A. In vitro evaluation on HeLa cells of protective mechanisms of probiotic lactobacilli against Candida clinical isolates. J Appl Microbiol. 2015;119:1383–90. https://doi.org/10.1111/jam.12947.

    Article  PubMed  CAS  Google Scholar 

  18. Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011;9:109–18. https://doi.org/10.1038/nrmicro2475.

    Article  PubMed  CAS  Google Scholar 

  19. Desai JV, Mitchell AP. Candida albicans biofilm development and its genetic control. Microbiol Spectr. 2015. https://doi.org/10.1128/microbiolspec.MB-0005-2014.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Atassi F, Brassart D, Grob P, Graf F, Servin AL. Lactobacillus strains isolated from the vaginal microbiota of healthy women inhibit Prevotella bivia and Gardnerella vaginalis in coculture and cell culture. FEMS Immunol Med Microbiol. 2006;48:424–32. https://doi.org/10.1111/j.1574-695X.2006.00162.x.

    Article  PubMed  CAS  Google Scholar 

  21. Kang CH, Han SH, Kim Y, Paek NS, So JS. In vitro probiotic properties of Lactobacillus salivarius MG242 isolated from human vagina. Probiotics Antimicrob Proteins. 2017. https://doi.org/10.1007/s12602-017-9323-5.

    Article  PubMed  Google Scholar 

  22. Verdenelli MC, Coman MM, Cecchini C, Silvi S, Orpianesi C, Cresci A. Evaluation of antipathogenic activity and adherence properties of human Lactobacillus strains for vaginal formulations. J Appl Microbiol. 2014;116:1297–307. https://doi.org/10.1111/jam.12459.

    Article  PubMed  CAS  Google Scholar 

  23. Parolin C, Marangoni A, Laghi L, Foschi C, Ñahui Palomino RA, Calonghi N, Cevenini R, Vitali B. Isolation of vaginal lactobacilli and characterization of anti-Candida activity. PLoS ONE. 2015;10:e0131220. https://doi.org/10.1371/journal.pone.0131220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Harriott MM, Noverr MC. Importance of Candida-bacterial polymicrobial biofilms in disease. Trends Microbiol. 2011;19:557–63. https://doi.org/10.1016/j.tim.2011.07.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. James KM, MacDonald KW, Chanyi RM, Cadieux PA, Burton JP. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant. J Med Microbiol. 2016;65:328–36. https://doi.org/10.1099/jmm.0.000226.

    Article  PubMed  CAS  Google Scholar 

  26. Calonghi N, Parolin C, Sartor G, Verardi L, Giordani B, Frisco G, Marangoni A, Vitali B. Interaction of vaginal Lactobacillus strains with HeLa cells plasma membrane. Benefic Microbes. 2017;8:625–33. https://doi.org/10.3920/BM2016.0212.

    Article  CAS  Google Scholar 

  27. Cribby S, Taylor M, Reid G. Vaginal microbiota and the use of probiotics. Interdiscip Perspect Infect Dis. 2008;2008:256490. https://doi.org/10.1155/2008/256490.

    Article  PubMed  CAS  Google Scholar 

  28. Samaranayake YH, Cheung BPK, Yau JYY, Yeung SKW, Samaranayake LP. Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS ONE. 2013;8:e62902. https://doi.org/10.1371/journal.pone.0062902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bassilana M, Hopkins J, Arkowitz RA. Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth. Eukaryot Cell. 2005;4:588–603. https://doi.org/10.1128/EC.4.3.588-603.2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Uppuluri P, Chaturvedi AK, Lopez-Ribot JL. Design of a simple model of Candida albicans biofilms formed under conditions of flow: development, architecture, and drug resistance. Mycopathologia. 2009;168:101–9. https://doi.org/10.1007/s11046-009-9205-9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hierro N, Esteve-Zarzoso B, González A, Mas A, Guillamón JM. Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine. Appl Environ Microbiol. 2006;72:7148–55. https://doi.org/10.1128/AEM.00388-06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Research Program on Emerging and Re-emerging Infectious Diseases of the Japan Agency for Medical Research and Development, and the Japan Society for the Promotion of Science, KAKENHI (to TS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sugita.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Vishnu Chaturvedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, Y., Cho, O., Sugita, T. et al. Culture Supernatants of Lactobacillus gasseri and L. crispatus Inhibit Candida albicans Biofilm Formation and Adhesion to HeLa Cells. Mycopathologia 183, 691–700 (2018). https://doi.org/10.1007/s11046-018-0259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-018-0259-4

Keywords

Navigation