Mycopathologia

, Volume 183, Issue 3, pp 623–627 | Cite as

Resistance Mechanism in a Terbinafine-Resistant Strain of Microsporum canis

  • Rui Kano
  • Yun-Hsia Hsiao
  • Hock Siew Han
  • Charles Chen
  • Atsuhiko Hasegawa
  • Hiroshi Kamata
Short Communication
  • 89 Downloads

Abstract

To clarify the terbinafine (TRF) resistance mechanism in a TRF-resistant strain of Microsporum canis, the expression of the pleiotropic drug resistance (PDR1), multidrug resistance (MDR1), MDR2 and MDR4 genes were investigated by real-time quantitative PCR (RT-qPCR) analysis, given the known interaction of the corresponding proteins with antifungals and with the efflux blocker FK506. The expression of the PDR1, MDR1, MDR2 and MDR4 genes was 2–4 times higher in the TRF-resistant strain grown in the presence of 0.14 µg/mL of TRF than in TRF-susceptible strains cultured in the absence of TRF. The TRF-resistant strain exhibited MICs of > 32 µg/mL for TRF alone; this resistance was attenuated to an MIC of 8 µg/mL in the presence of FK506, indicating that the TRF inhibitory concentration index value was < 0.75. The additive effect of the efflux blocker FK506 on TRF resistance was detected in the TRF-resistant strain. These results indicated that the TRF resistance in this strain reflects overexpression of genes encoding ABC transporter proteins.

Keywords

ABC transporter Microsporum canis FK506 Resistance Terbinafine 

Notes

Acknowledgements

This study was supported by a grant (“International joint research and training of young researchers for zoonosis control in the globalized world”) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

Compliance with Ethical Standards

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this paper.

References

  1. 1.
    Moriello KA, DeBoer DJ. Dermatophytosis. In: Greene CE, editor. Infectious diseases of the dog and cat. 4th ed. St. Louis: Saunders Elsevier; 2012. p. 588–602.Google Scholar
  2. 2.
    Reiss E, Shadomy HJ, Lyon GMIII (2012) Dermatophytosis. In: Fundamental medical mycology. Wiley, New Jersey pp 527–565.Google Scholar
  3. 3.
    Digby SS, Hald M, Arendrup MC, Hjort SV, Kofoed K. Darier disease complicated by Terbinafine-resistant Trichophyton rubrum: a case report. Acta Derm Venereol. 2017;97:139–40.CrossRefPubMedGoogle Scholar
  4. 4.
    Martins MP, Franceschini AC, Jacob TR, Rossi A, Martinez-Rossi NM. Compensatory expression of multidrug-resistance genes encoding ABC transporters in dermatophytes. J Med Microbiol. 2016;65:605–10.CrossRefPubMedGoogle Scholar
  5. 5.
    Hsiao Y-H, Kumagawa M, Rui Kano, Han HS, Chen C. Terbinafine resistance clinical isolate of Microsporum canis from a cat in Asia. J Vet Med Sci. 2017; Submitted.Google Scholar
  6. 6.
    Denardi LB, Mario DA, Loreto ÉS, Santurio JM, Alves SH. Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates. Braz J Microbiol. 2015;46:125–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ricardo E, Miranda IM, Faria-Ramos I, Silva RM, Rodrigues AG, Pina-Vaz C. In vivo and in vitro acquisition of resistance to voriconazole by Candida krusei. Antimicrob Agents Chemother. 2014;58:4604–11.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Itoi S, Kano R, Hasegawa A, Hasegawa A, Kamata H. In vitro activities of antifungal agents against clinical isolates of dermatophytes from animals. J Vet Med Sci. 2012;74:1067–9.CrossRefPubMedGoogle Scholar
  9. 9.
    NCCLS; National Committee for Clinical and Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts. In: Approved standard M27-A2. Wayne: National Committee for Clinical Laboratory Standards; 2002.Google Scholar
  10. 10.
    Kano R, Okubo M, Yanai T, Hasegawa A, Kamata H. First isolation of azole-resistant Cryptococcus neoformans from feline cryptococcosis. Mycopathologia. 2015;180:427–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Kano R, Sobukawa H, Murayama SY, Hirose D, Tanaka Y, Kosuge Y, Hasegawa A, Kamata H. In vitro resistance of Aspergillus fumigatus to azole farm fungicide. J. Infect Chemother. 2016;22:133–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Milne KE, Gould IM. Combination antimicrobial susceptibility testing of multidrug-resistant Stenotrophomonas maltophilia from cystic fibrosis patients. Antimicrob Agents Chemother. 2012;56:4071–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lelièvre L, Groh M, Angebault C, Maherault AC, Didier E, Bougnoux ME. Azole resistant Aspergillus fumigatus: an emerging problem. Med Mal Infect. 2013;43:139–45.CrossRefPubMedGoogle Scholar
  14. 14.
    Gullo FP, Rossi SA, Sardi Jde C, Teodoro VL, Mendes-Giannini MJ, Fusco-Almeida AM. Cryptococcosis: epidemiology, fungal resistance, and new alternatives for treatment. Eur J Clin Microbiol Infect Dis. 2013;3:1377–91.CrossRefGoogle Scholar
  15. 15.
    Yamada T, Maeda M, Alshahni MM, Tanaka R, Yaguchi T, Bontems O, Salamin K, Fratti M, Monod M. Terbinafine resistance of trichophyton clinical isolates caused by specific point mutations in the squalene epoxidase gene. Antimicrob Agents Chemother. 2017.  https://doi.org/10.1128/aac.00115-17.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rui Kano
    • 1
  • Yun-Hsia Hsiao
    • 2
  • Hock Siew Han
    • 3
  • Charles Chen
    • 2
  • Atsuhiko Hasegawa
    • 4
  • Hiroshi Kamata
    • 1
  1. 1.Department of Veterinary PathobiologyNihon University College of Bioresource SciencesFujisawaJapan
  2. 2.Asian Veterinary Specialist Referral CenterTaipeiTaiwan
  3. 3.The Animal ClinicSingaporeSingapore
  4. 4.Teikyo University Institute of Medical MycologyHachioji, TokyoJapan

Personalised recommendations