Skip to main content
Log in

Small Colony Variants of Pseudomonas aeruginosa Display Heterogeneity in Inhibiting Aspergillus fumigatus Biofilm

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa and Aspergillus fumigatus are major microbes in cystic fibrosis (CF). We reported non-mucoid P. aeruginosa isolates more inhibitory to A. fumigatus than mucoid ones. Another CF P. aeruginosa phenotype, small colony variants (SCVs), is an unknown factor in intermicrobial competition with A. fumigatus. Clinical SCV isolates and reference CF non-mucoid isolate (Pa10, producing normal-sized colonies) were compared. Live cells of P. aeruginosa or filtrates from P. aeruginosa planktonic or biofilm cultures were co-incubated with A. fumigatus growing under conditions allowing biofilm formation or with preformed biofilm. Metabolic activity of A. fumigatus biofilm was then measured. When necessary, assays were done after adjustment for growth differences by adding fresh medium to the planktonic culture filtrate. Pyoverdine determinations were performed spectrophotometrically on the planktonic culture filtrates. In all experimental conditions (live cells and planktonic or biofilm culture filtrates of P. aeruginosa versus A. fumigatus biofilm formation or preformed biofilm), three SCV isolates were less inhibitory than Pa10, two equal or more inhibitory. Adjusting planktonic culture filtrates for growth differences showed SCV inhibition differences variably related to growth or deficient inhibitor production. Studies suggested the principal P. aeruginosa inhibitor to be pyoverdine. SCV isolates appear heterogeneous in their capacity to inhibit A. fumigatus biofilm. SCV isolates can be important in the CF microbiome, because they are capable of intermicrobial inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shoseyov D, Brownlee KG, Conway SP, et al. Aspergillus bronchitis in cystic fibrosis. Chest. 2006;130:222–6.

    Article  PubMed  Google Scholar 

  2. Amin R, Dupuis A, Aaron SD, et al. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest. 2010;137:171–6.

    Article  PubMed  Google Scholar 

  3. Mangan A. Interactions between some aural Aspergillus species and bacteria. J Gen Microbiol. 1969;58:261–6.

    Article  CAS  PubMed  Google Scholar 

  4. Blyth W, Forey A. The influence of respiratory bacteria and their biochemical fractions on Aspergillus fumigatus. Sabouraudia. 1971;9:273–82.

    Article  CAS  PubMed  Google Scholar 

  5. Kerr JR, Taylor GW, Rutman A, et al. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol. 1999;52:385–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Briard B, Bomme P, Lechner BE, et al. Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep. 2015;5:8220.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Briard B, Rasoldier V, Bomme P, et al. Dirhamnolipids secreted from Pseudomonas aeruginosa modify anjpegungal susceptibility of Aspergillus fumigatus by inhibiting β1,3glucan synthase activity. ISME J. 2017;11:1578–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sass G, Nazik H, Penner J, et al. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. Infectious Disease Week, San Diego, 2017, Abstr.64764.

  9. Secor PR, Sass G, Nazik H, et al. Effect of acute predation with bacteriophage on intermicrobial aggression by Pseudomonas aeruginosa. PLoS ONE. 2017;12:e0179659.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Williams HD, Davies JC. Basic science for the chest physician: Pseudomonas aeruginosa and the cystic fibrosis airway. Thorax. 2012;67:465–7.

    Article  PubMed  Google Scholar 

  11. Folkesson A, Jelsbak L, Yang L, et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol. 2012;10:841–51.

    Article  CAS  PubMed  Google Scholar 

  12. Ferreira JAG, Penner JC, Moss RB, et al. Inhibition of Aspergillus fumigatus and its biofilm by Pseudomonas aeruginosa is dependent on the source, phenotype and growth conditions of the bacterium. PLoS ONE. 2015;10:e0134692.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shirazi F, Ferreira JAG, Stevens DA, et al. Biofilm filtrates of Pseudomonas aeruginosa strains isolated from cystic fibrosis patients inhibit preformed Aspergillus fumigatus biofilms via apoptosis. PLoS ONE. 2016;11:e0150155.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Haussler S, Tummler B, Weisbrot H, et al. Small colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis. 1999;29:621–5.

    Article  CAS  PubMed  Google Scholar 

  15. Evans TJ. Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis. Future Microbiol. 2015;10:231–9.

    Article  CAS  PubMed  Google Scholar 

  16. Hogardt M, Heesemann J. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int J Med Microbiol. 2010;300:557–62.

    Article  CAS  PubMed  Google Scholar 

  17. Thomassen MJ, Demko CA, Boxerbaum B, et al. Multiple isolates of Pseudomonas aeruginosa with differing antimicrobial susceptibility patterns from patients with cystic fibrosis. J Infect Dis. 1979;140:873–80.

    Article  CAS  PubMed  Google Scholar 

  18. Schneider M, Muhlemann K, Droz S, et al. Clinical characteristics associated with isolation of small-colony variants of Staphylococcus aureus and Pseudomonas aeruginosa from respiratory secretions of patients with cystic fibrosis. J Clin Microbiol. 2008;46:1832–4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cao H, Krishnan G, Goumnerov B, et al. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci USA. 2001;98:14613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mayer-Hamblett N, Ramsey BW, Kulasekara HD, et al. Pseudomonas aeruginosa phenotypes associated with eradication failure in children with cystic fibrosis. Clin Infect Dis. 2014;59:624–31.

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998;30:295–304.

    Article  PubMed  Google Scholar 

  22. Lee DG, Urbach JM, Wu G, et al. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol. 2006;7:R90.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liberati NT, Urbach JM, Miyata S, et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA. 2006;103:2833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Denning DW, Clemons KV, Hanson LH, et al. Restriction endonuclease analysis of total cellular DNA of Aspergillus fumigatus isolates of geographically and epidemiologically diverse origin. J Infect Dis. 1990;162:1151–8.

    Article  CAS  PubMed  Google Scholar 

  25. Denning DW, Stevens DA. Efficacy of cilofungin alone and in combination with amphotericin B in a murine model of disseminated aspergillosis. Antimicrob Agents Chemother. 1991;35:1329–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anand R, Clemons KV, Stevens DA. Effect of anaerobiasis or hypoxia on Pseudomonas aeruginosa inhibition of Aspergillus fumigatus biofilm. Arch Microbiol. 2017;199:881–90.

    Article  CAS  PubMed  Google Scholar 

  27. Sabra W, Haddad AM, Zeng AP. Comparative physiologic study of the wild type and the small colony variant of Pseudomonas aeruginosa 20265 under controlled growth conditions. World J Microbiol Biotechnol. 2014;30:1027–36.

    Article  CAS  PubMed  Google Scholar 

  28. Kahl B, Herrmann M, Everding AS, et al. Persistent infection with small colony variant strains of Staphylococcus aureus in patients with cystic fibrosis. J Infect Dis. 1998;177:1023–9.

    Article  CAS  PubMed  Google Scholar 

  29. Besier S, Smaczny C, von Mallinckrodt C, et al. Prevalence and clinical significance of Staphylococcus aureus small-colony variants in cystic fibrosis lung disease. J Clin Microbiol. 2007;45:168–72.

    Article  CAS  PubMed  Google Scholar 

  30. Wolter DJ, Emerson JC, McNamara S, et al. Staphylococcus aureus small-colony variants are independently associated with worse lung disease in children with cystic fibrosis. Clin Infect Dis. 2013;57:384–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia LG, Lemaire S, Kahl BC, et al. Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J Antimicrob Chemother. 2013;68:1455–64.

    Article  CAS  PubMed  Google Scholar 

  32. Malone JG. Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs. Infect Drug Resist. 2015;8:237–47.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lynch SV, Bruce KD. The cystic fibrosis airway microbiome. Cold Spring Harb Perspect Med. 2013;3:a009738.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Manavathu EK, Vager DL, Vazquez JA. Isolation and characterization of small colony variants of Pseudomonas aeruginosa from monomicrobial and P. aeruginosa-Aspergillus fumigatus mixed microbial biofilms. In: Interscience conference on antimicrobial agents and chemotherapy, 2012. Abstr. M-986.

  35. Nazik H, Moss RB, Karna V, et al. Are cystic fibrosis Aspergillus fumigatus isolates different? Intermicrobial interactions with Pseudomonas. Mycopathologia. 2017;182:315–8.

    Article  CAS  PubMed  Google Scholar 

  36. Visaggio D, Pasqua M, Bonchi C, et al. Cell aggregation promotes pyoverdine-dependent iron uptake and virulence in Pseudomonas aeruginosa. Front Microbiol. 2015;6:902.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was presented in part to the 4th Meeting of the ECMM/ISHAM Working group, Fungal respiratory infections in Cystic Fibrosis, in Osuna (Seville), Spain, June 5–6, 2017. These studies were partially supported by a grant from the Child Health Research Institute, Stanford Transdisciplinary Initiatives Program, CIMR no. 3777, and by a gift from John Flatley, CIMR no. 3770. The funding sources had no involvement in study design, data handling or interpretation, writing or decision to publish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Anand.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests/conflicts of interest.

Informed Consent

CF isolates from patient respiratory cultures were obtained after written informed consent for biobanking of the patients’ specimens and subsequent use, approved by the Stanford Institutional Review Board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, R., Moss, R.B., Sass, G. et al. Small Colony Variants of Pseudomonas aeruginosa Display Heterogeneity in Inhibiting Aspergillus fumigatus Biofilm. Mycopathologia 183, 263–272 (2018). https://doi.org/10.1007/s11046-017-0186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-017-0186-9

Keywords

Navigation