Skip to main content

Advertisement

Log in

Enzymatic Mechanisms Involved in Evasion of Fungi to the Oxidative Stress: Focus on Scedosporium apiospermum

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The airways of patients with cystic fibrosis (CF) are frequently colonized by various filamentous fungi, mainly Aspergillus fumigatus and Scedosporium species. To establish within the respiratory tract and cause an infection, these opportunistic fungi express pathogenic factors allowing adherence to the host tissues, uptake of extracellular iron, or evasion to the host immune response. During the colonization process, inhaled conidia and the subsequent hyphae are exposed to reactive oxygen species (ROS) and reactive nitrogen species (RNS) released by phagocytic cells, which cause in the fungal cells an oxidative stress and a nitrosative stress, respectively. To cope with these constraints, fungal pathogens have developed various mechanisms that protect the fungus against ROS and RNS, including enzymatic antioxidant systems. In this review, we summarize the different works performed on ROS- and RNS-detoxifying enzymes in fungi commonly encountered in the airways of CF patients and highlight their role in pathogenesis of the airway colonization or respiratory infections. The potential of these enzymes as serodiagnostic tools is also emphasized. In addition, taking advantage of the recent availability of the whole genome sequence of S. apiospermum, we identified the various genes encoding ROS- and RNS-detoxifying enzymes, which pave the way for future investigations on the role of these enzymes in pathogenesis of these emerging species since they may constitute new therapeutics targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Elborn JS. Cystic fibrosis. Lancet. 2016;388:2519–31.

    Article  CAS  PubMed  Google Scholar 

  2. Horré R, Symoens F, Delhaes L, Bouchara JP. Fungal respiratory infections in cystic fibrosis: a growing problem. Med Mycol. 2010;48(Suppl 1):S1–3.

    Article  PubMed  Google Scholar 

  3. Galli F, Battistoni A, Gambari R, et al. Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta. 2012;1822:690–713.

    Article  CAS  PubMed  Google Scholar 

  4. Reid DW, Misso N, Aggarwal S, Thompson PJ, Walters EH. Oxidative stress and lipid-derived inflammatory mediators during acute exacerbations of cystic fibrosis. Respirology. 2007;12:63–9.

    Article  PubMed  Google Scholar 

  5. Thywißen A, Heinekamp T, Dahse HM, et al. Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front Microbiol. 2011;2:96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Carrion Sde J, Leal SM, Ghannoum MA, Aimanianda V, Latgé JP, Pearlman E. The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J Immunol. 2013;191:2581–8.

    Article  PubMed  CAS  Google Scholar 

  7. Amin S, Thywissen A, Heinekamp T, Saluz HP, Brakhage AA. Melanin dependent survival of Aspergillus fumigatus conidia in lung epithelial cells. Int J Med Microbiol. 2014;304:626–36.

    Article  CAS  PubMed  Google Scholar 

  8. Bayry J, Beaussart A, Dufrêne YF, et al. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response. Infect Immun. 2014;82:3141–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chotirmall SH, Mirkovic B, Lavelle GM, McElvaney NG. Immunoevasive Aspergillus virulence factors. Mycopathologia. 2014;178:363–70.

    Article  CAS  PubMed  Google Scholar 

  10. Rambach G, Blum G, Latgé J-P, et al. Identification of Aspergillus fumigatus surface components that mediate interaction of conidia and hyphae with human platelets. J Infect Dis. 2015;212:1140–9.

    Article  CAS  PubMed  Google Scholar 

  11. Cortez KJ, Roilides E, Quiroz-Telles F, et al. Infections caused by Scedosporium spp. Clin Microbiol Rev. 2008;21:157–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harun A, Gilgado F, Chen SC, Meyer W. Abundance of Pseudallescheria/Scedosporium species in the Australian urban environment suggests a possible source for scedosporiosis including the colonization of airways in cystic fibrosis. Med Mycol. 2010;48(Suppl 1):S70–6.

    Article  PubMed  Google Scholar 

  13. Lackner M, de Hoog GS, Yang L, et al. Proposed nomenclature for Pseudallescheria, Scedosporium and related genera. Fungal Divers. 2014;67:1–10.

    Article  Google Scholar 

  14. Rougeron A, Schuliar G, Leto J, et al. Human-impacted areas of France are environmental reservoirs of the Pseudallescheria boydii/Scedosporium apiospermum species complex. Environ Microbiol. 2015;17:1039–48.

    Article  CAS  PubMed  Google Scholar 

  15. Gilgado F, Cano J, Gené J, Guarro J. Molecular phylogeny of the Pseudallescheria boydii species complex: proposal of two new species. J Clin Microbiol. 2005;43:4930–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilgado F, Cano J, Gené J, Sutton DA, Guarro J. Molecular and phenotypic data supporting distinct species statuses for Scedosporium apiospermum and Pseudallescheria boydii and the proposed new species Scedosporium dehoogii. J Clin Microbiol. 2008;46:766–71.

    Article  PubMed  Google Scholar 

  17. Cimon B, Carrère J, Vinatier JF, et al. Clinical significance of Scedosporium apiospermum in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2000;19:53–6.

    Article  CAS  PubMed  Google Scholar 

  18. Defontaine A, Zouhair R, Cimon B, et al. Genotyping study of Scedosporium apiospermum isolates from patients with cystic fibrosis. J Clin Microbiol. 2002;40:2108–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pihet M, Carrère J, Cimon B, et al. Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis—a review. Med Mycol. 2008;47:387–97.

    Article  PubMed  Google Scholar 

  20. Horré R, Marklein G. Isolation and clinical significance of Pseudallescheria and Scedosporium species. Med Mycol. 2009;47:415–21.

    Article  PubMed  Google Scholar 

  21. Horré R, Marklein G, Siekmeier R, Nidermajer S, Reiffert SM. Selective isolation of Pseudallescheria and Scedosporium species from respiratory tract specimens of cystic fibrosis patients. Respiration. 2009;77:320–4.

    Article  PubMed  Google Scholar 

  22. Blyth CC, Middleton PG, Harun A, et al. Clinical associations and prevalence of Scedosporium spp. in Australian cystic fibrosis patients: identification of novel risk factors? Med Mycol. 2010;48(Suppl 1):S37–44.

    Article  CAS  PubMed  Google Scholar 

  23. Blyth CC, Harun A, Middleton PG, et al. Detection of occult Scedosporium species in respiratory tract specimens from patients with cystic fibrosis by use of selective media. J Clin Microbiol. 2010;48:314–6.

    Article  CAS  PubMed  Google Scholar 

  24. Symoens F, Knoop C, Schrooyen M, et al. Disseminated Scedosporium apiospermum infection in a cystic fibrosis patient after double-lung transplantation. J Heart Lung Transpl. 2006;25:603–7.

    Article  Google Scholar 

  25. Sahi H, Avery RK, Minai OA, et al. Scedosporium apiospermum (Pseudallescheria boydii) infection in lung transplant recipients. J Heart Lung Transpl. 2007;26:350–6.

    Article  Google Scholar 

  26. Balandin B, Aguilar M, Sánchez I, et al. Scedosporium apiospermum and S prolificans mixed disseminated infection in a lung transplant recipient: an unusual case of long-term survival with combined systemic and local antifungal therapy in intensive care unit. Med Mycol Case Rep. 2016;11:53–6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Peghin M, Monforte V, Martin-Gomez MT, et al. Epidemiology of invasive respiratory disease caused by emerging non-Aspergillus molds in lung transplant recipients. Transpl Infect Dis. 2016;18:70–8.

    Article  CAS  PubMed  Google Scholar 

  28. Vandeputte P, Ghamrawi S, Rechenmann M, et al. Draft genome sequence of the pathogenic fungus Scedosporium apiospermum. Genome Announc. 2014;2:e00988-14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Davies KJA. Oxidative stress: the paradox of aerobic life. Biochem Soc Symp. 1995;61:1–31.

    Article  CAS  PubMed  Google Scholar 

  30. Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA. 2000;97:8841–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2004;2:820–32.

    Article  CAS  PubMed  Google Scholar 

  32. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  33. Delattre J, Beaudeux J-L, Bonnefont-Rousselot D. Radicaux libres et stress oxydant: aspects biologiques et pathologiques. Lavoisier. 2007:548.

  34. Lancaster JR, Vega JM, Kamin H, et al. Identification of the iron-sulfur center of spinach ferredoxin-nitrite reductase as a tetranuclear center, and preliminary EPR studies of mechanism. J Biol Chem. 1979;254:1268–72.

    CAS  PubMed  Google Scholar 

  35. Prodouz KN, Garrett RH. Neurospora crassa NAD(P)H-nitrite reductase. Studies on its composition and structure. J Biol Chem. 1981;256:9711–7.

    CAS  PubMed  Google Scholar 

  36. Hall N, Tomsett AB. Structure-function analysis of NADPH:nitrate reductase from Aspergillus nidulans: analysis of altered pyridine nucleotide specificity in vivo. Microbiology. 2000;146:1399–406.

    Article  CAS  PubMed  Google Scholar 

  37. Belozerskaya TA, Gessler NN. Reactive oxygen species and the strategy of antioxidant defense in fungi: a review. Appl Biochem Microbiol. 2007;43:506–15.

    Article  CAS  Google Scholar 

  38. Gessler NN, Aver’yanov AA, Belozerskaya TA. Reactive oxygen species in regulation of fungal development. Biochem. 2007;72:1091–109.

    CAS  Google Scholar 

  39. Forrester MT, Eyler CE, Rich JN. Bacterial flavohemoglobin: a molecular tool to probe mammalian nitric oxide biology. Biotechniques. 2011;50:41–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Forrester MT, Foster MW. Protection from nitrosative stress: a central role for microbial flavohemoglobin. Free Radic Biol Med. 2012;52:1620–33.

    Article  CAS  PubMed  Google Scholar 

  41. Marcos AT, Ramos MS, Marcos JF, et al. Nitric oxide synthesis by nitrate reductase is regulated during development in Aspergillus. Mol Microbiol. 2016;99:15–33.

    Article  CAS  PubMed  Google Scholar 

  42. Goldblatt D. Recent advances in chronic granulomatous disease. J Infect. 2014;69:S32–5.

    Article  PubMed  Google Scholar 

  43. Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev. 2017;41:139–57.

    PubMed  Google Scholar 

  44. Winkelstein JA, Marino MC, Johnston RB, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore). 2000;79:155–69.

    Article  CAS  Google Scholar 

  45. Henriet SSV, Verweij PE, Warris A. Aspergillus nidulans and chronic granulomatous disease: a unique host-pathogen interaction. J Infect Dis. 2012;206:1128–37.

    Article  CAS  PubMed  Google Scholar 

  46. Jabado N, Casanova JL, Haddad E, et al. Invasive pulmonary infection due to Scedosporium apiospermum in two children with chronic granulomatous disease. Clin Infect Dis. 1998;27:1437–41.

    Article  CAS  PubMed  Google Scholar 

  47. Santos PE, Oleastro M, Galicchio M, Zelazko M. Fungal infections in paediatric patients with chronic granulomatous disease. Rev Iberoam Micol. 2000;17:6–9.

    CAS  PubMed  Google Scholar 

  48. Gompels MM, Bethune CA, Jackson G, Spickett GP. Scedosporium apiospermum in chronic granulomatous disease treated with an HLA matched bone marrow transplant. J Clin Pathol. 2002;55:784–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parta M, Hilligoss D, Kelly C, et al. Haploidentical hematopoietic cell transplantation with post-transplant cyclophosphamide in a patient with chronic granulomatous disease and active infection: a first report. J Clin Immunol. 2015;35:675–80.

    Article  CAS  PubMed  Google Scholar 

  50. Bhat SV, Paterson DL, Rinaldi MG, Veldkamp PJ. Scedosporium prolificans brain abscess in a patient with chronic granulomatous disease: successful combination therapy with voriconazole and terbinafine. Scand J Infect Dis. 2007;39:87–90.

    Article  PubMed  Google Scholar 

  51. Giraud S, Pihet M, Razafimandimby B, et al. Geosmithia argillacea: an emerging pathogen in patients with cystic fibrosis. J Clin Microbiol. 2010;48:2381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ishiwada N, Takeshita K, Yaguchi T, et al. The first case of invasive mixed-mold infections due to Emericella nidulans var. echinulata and Rasamsonia piperina in a patient with chronic granulomatous disease. Mycopathologia. 2016;181:305–9.

    Article  PubMed  Google Scholar 

  53. Kenney RT, Kwon-Chung KJ, Waytes AT, et al. Successful treatment of systemic Exophiala dermatitidis infection in a patient with chronic granulomatous disease. Clin Infect Dis. 1992;14:235–42.

    Article  CAS  PubMed  Google Scholar 

  54. Chotirmall SH, O’Donoghue E, Bennett K, et al. Sputum Candida albicans presages FEV decline and hospital-treated exacerbations in cystic fibrosis. Chest. 2010;138:1186–95.

    Article  PubMed  Google Scholar 

  55. Ziesing S, Suerbaum S, Sedlacek L. Fungal epidemiology and diversity in cystic fibrosis patients over a 5-year period in a national reference center. Med Mycol. 2016;54:781–6.

    Article  CAS  PubMed  Google Scholar 

  56. Hwang C-S, Rhie G, Oh J-H, et al. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology. 2002;148:3705–13.

    Article  CAS  PubMed  Google Scholar 

  57. Chaves GM, da Silva WP. Superoxide dismutases and glutaredoxins have a distinct role in the response of Candida albicans to oxidative stress generated by the chemical compounds menadione and diamide. Mem Inst Oswaldo Cruz. 2012;107:998–1005.

    Article  CAS  PubMed  Google Scholar 

  58. Gleason JE, Galaleldeen A, Peterson RL, et al. Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense. Proc Natl Acad Sci USA. 2014;111:5866–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tillmann AT, Strijbis K, Cameron G, et al. Contribution of Fdh3 and Glr1 to glutathione redox state, stress adaptation and virulence in Candida albicans. PLoS ONE. 2015;10:e0126940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chaves GM, Bates S, Maccallum DM, Odds FC. Candida albicans GRX2, encoding a putative glutaredoxin, is required for virulence in a murine model. Genet Mol Res. 2007;6:1051–63.

    CAS  PubMed  Google Scholar 

  61. da Silva Dantas A, Patterson MJ, Smith DA, et al. Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol Cell Biol. 2010;30:4550–63.

    Article  CAS  Google Scholar 

  62. Zaki N, Bakar F, Mahadi N, Murad A. Candida albicans TRR1 heterozygotes show increased sensitivity to oxidative stress and decreased pathogenicity. Afr J Microbiol Res. 2012;6:1796–805.

    CAS  Google Scholar 

  63. Godoy JSR, Kioshima ÉS, Abadio AKR, et al. Structural and functional characterization of the recombinant thioredoxin reductase from Candida albicans as a potential target for vaccine and drug design. Appl Microbiol Biotechnol. 2015;100:4015–25.

    Article  PubMed  CAS  Google Scholar 

  64. Abadio AKR, Kioshima ES, Teixeira MM, et al. Comparative genomics allowed the identification of drug targets against human fungal pathogens. BMC Genom. 2011;12:75.

    Article  CAS  Google Scholar 

  65. Hromatka BS, Noble SM, Johnson AD. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell. 2005;16:4814–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Suenobu N, Kweon M-N, Kiyono H. Nasal vaccination induces the ability to eliminate Candida colonization without influencing the pre-existing antigen-specific IgE Abs: a possibility for the control of Candida-related atopic dermatitis. Vaccine. 2002;20:2972–80.

    Article  CAS  PubMed  Google Scholar 

  67. Haase G, Skopnik H, Kusenbach G. Exophiala dermatitidis infection in cystic fibrosis. Lancet. 1990;336:188–9.

    Article  CAS  PubMed  Google Scholar 

  68. Nagano Y, Elborn JS, Millar BC, et al. Development of a novel PCR assay for the identification of the black yeast, Exophiala (Wangiella) dermatitidis from adult patients with cystic fibrosis (CF). J Cyst Fibros. 2008;7:576–80.

    Article  CAS  PubMed  Google Scholar 

  69. Lebecque P, Leonard A, Huang D, et al. Exophiala (Wangiella) dermatitidis and cystic fibrosis—prevalence and risk factors. Med Mycol. 2010;48(Suppl 1):S4–9.

    Article  PubMed  Google Scholar 

  70. Kondori N, Gilljam M, Lindblad A, Jönsson B, Moore ERB, Wennerås C. High rate of Exophiala dermatitidis recovery in the airways of patients with cystic fibrosis is associated with pancreatic insufficiency. J Clin Microbiol. 2011;49:1004–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Robertson KL, Mostaghim A, Cuomo CA, et al. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms. PLoS ONE. 2012;7:e48674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paris S, Wysong D, Debeaupuis JP, et al. Catalases of Aspergillus fumigatus. Infect Immun. 2003;71:3551–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Calera JA, Paris S, Monod M, et al. Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus. Infect Immun. 1997;65:4718–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Leal SM, Vareechon C, Cowden S, et al. Fungal antioxidant pathways promote survival against neutrophils during infection. J Clin Invest. 2012;122:2482–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hillmann F, Bagramyan K, Straßburger M, et al. The crystal structure of peroxiredoxin Asp f3 provides mechanistic insight into oxidative stress resistance and virulence of Aspergillus fumigatus. Sci Rep. 2016;6. doi:10.1038/srep33396.

  76. Lessing F, Kniemeyer O, Wozniok I, et al. The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryot Cell. 2007;6:2290–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ito JI, Lyons JM, Hong TB, et al. Vaccinations with recombinant variants of Aspergillus fumigatus allergen Asp f 3 protect mice against invasive aspergillosis. Infect Immun. 2006;74:5075–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Diaz-Arevalo D, Ito JI, Kalkum M. Protective effector cells of the recombinant Asp f3 anti-aspergillosis vaccine. Front Microbiol. 2012;3:299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ullmann BD, Myers H, Chiranand W, Lazzell AL, Zhao Q, Vega LA, et al. Inducible defense mechanism against nitric oxide in Candida albicans. Eukaryot Cell. 2004;3:715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hromatka BS, Noble SM, Johnson AD. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell. 2005;16:4814–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lapp K, Vödisch M, Kroll K, Strassburger M, Kniemeyer O, Heinekamp T, et al. Characterization of the Aspergillus fumigatus detoxification systems for reactive nitrogen intermediates and their impact on virulence. Front Microbiol. 2014;5:469.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pérez-Bercoff Å, Papanicolaou A, Ramsperger M, et al. Draft genome of Australian environmental strain WM 09.24 of the opportunistic human pathogen Scedosporium aurantiacum. Genome Announc. 2015;3(1):e01526-14.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ghamrawi S, Gastebois A, Zykwinska A, et al. A multifaceted study of Scedosporium boydii cell wall changes during germination and identification of GPI-anchored proteins. PLoS ONE. 2015;10:e0128680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lima OC, Larcher G, Vandeputte P, et al. Molecular cloning and biochemical characterization of a Cu, Zn-superoxide dismutase from Scedosporium apiospermum. Microbes Infect. 2007;9:558–65.

    Article  CAS  PubMed  Google Scholar 

  85. Mina S, Marot-Leblond A, Cimon B, et al. Purification and characterization of a mycelial catalase from Scedosporium boydii, a useful tool for specific antibody detection in patients with cystic fibrosis. Clin Vaccine Immunol. 2015;22:37–45.

    Article  CAS  PubMed  Google Scholar 

  86. Zámocký M, Koller F. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Progr Biophys Mol Biol. 1999;72:19–66.

    Article  Google Scholar 

  87. O’Donoghue P, Amaro RE, Luthey-Schulten Z. On the structure of hisH: protein structure prediction in the context of structural and functional genomics. J Struct Biol. 2001;134:257–68.

    Article  PubMed  CAS  Google Scholar 

  88. Csuros M, Rogozin IB, Koonin EV. A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes. PLoS Comput Biol. 2011;7:e1002150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fuchs BB, RajaMuthiah R, Souza AC, et al. Inhibition of bacterial and fungal pathogens by the orphaned drug auranofin. Future Med Chem. 2016;8:117–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Erman JE, Vitello LB. Yeast cytochrome c peroxidase: mechanistic studies via protein engineering. Biochim Biophys Acta. 2002;1597:193–220.

    Article  CAS  PubMed  Google Scholar 

  91. Zámocký M, Dunand C. Divergent evolutionary lines of fungal cytochrome c peroxidases belonging to the superfamily of bacterial, fungal and plant heme peroxidases. FEBS Lett. 2006;580:6655–64.

    Article  PubMed  CAS  Google Scholar 

  92. Dantas AS, Andrade RV, de Carvalho MJ, Felipe MSS, Campos EG. Oxidative stress response in Paracoccidioides brasiliensis: assessing catalase and cytochrome c peroxidase. Mycol Res. 2008;112:747–56.

    Article  CAS  PubMed  Google Scholar 

  93. van Rantwijk F, Sheldon RA. Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects. Curr Opin Biotechnol. 2000;11:554–64.

    Article  PubMed  Google Scholar 

  94. Park JB, Clark DS. New reaction system for hydrocarbon oxidation by chloroperoxidase. Biotechnol Bioeng. 2006;94:189–92.

    Article  CAS  PubMed  Google Scholar 

  95. Johnstone IL, McCabe PC, Greaves P, et al. Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene. 1990;90:181–92.

    Article  CAS  PubMed  Google Scholar 

  96. Amaar YG, Moore MM. Mapping of the nitrate-assimilation gene cluster (crnA-niiA-niaD) and characterization of the nitrite reductase gene (niiA) in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Genet. 1998;33:206–15.

    Article  CAS  PubMed  Google Scholar 

  97. Böer E, Schröter A, Bode R, Piontek M, Kunze G. Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans. Yeast. 2009;26:83–93.

    Article  PubMed  CAS  Google Scholar 

  98. Pesce A, Tilleman L, Donné J, et al. Structure and haem-distal site plasticity in Methanosarcina acetivorans protoglobin. PLoS ONE. 2013;8(6):e66144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tranvanky P, Biguet J, Vaucelle T. Study on an antigenic fraction of Aspergillus fumigatus supporting a catalase activity. Consequence on the immunologic diagnosis of aspergillosis. Rev Immunol Ther Antimicrob. 1968;32:37–52.

    CAS  Google Scholar 

  100. Senet JM, Girault A, Robert R, Girault M. Diagnostic de l’aspergillose par hémagglutination indirecte 2 Utilisation d’une fraction catalasique purifiée d’Aspergillus fumigatus. Bull Soc Fr Mycol Méd. 1978;7:229–32.

    Google Scholar 

  101. Hamilton AJ, Holdom MD, Hay RJ. Specific recognition of purified Cu, Zn superoxide dismutase from Aspergillus fumigatus by immune human sera. J Clin Microbiol. 1995;33:495–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hamilton AJ, Holdom MD, Jeavons L. Expression of the Cu, Zn superoxide dismutase of Aspergillus fumigatus as determined by immunochemistry and immunoelectron microscopy. FEMS Immunol Med Microbiol. 1996;14:95–102.

    Article  CAS  PubMed  Google Scholar 

  103. Sarfati J, Monod M, Recco P, et al. Recombinant antigens as diagnostic markers for aspergillosis. Diagn Microbiol Infect Dis. 2006;55:279–91.

    Article  CAS  PubMed  Google Scholar 

  104. Holdom MD, Lechenne B, Hay RJ, Hamilton AJ, Monod M. Production and characterization of recombinant Aspergillus fumigatus Cu, Zn superoxide dismutase and its recognition by immune human sera. J Clin Microbiol. 2000;38:558–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Crameri R, Faith A, Hemmann S, et al. Humoral and cell-mediated autoimmunity in allergy to Aspergillus fumigatus. J Exp Med. 1996;184:265–70.

    Article  CAS  PubMed  Google Scholar 

  106. Kurup VP, Banerjee B, Hemmann S, Greenberger PA, Blaser K, Crameri R. Selected recombinant Aspergillus fumigatus allergens bind specifically to IgE in ABPA. Clin Exp Allergy. 2000;30:988–93.

    Article  CAS  PubMed  Google Scholar 

  107. Mina S, Staerck C, d’Almeida SM, et al. Identification of Scedosporium boydii catalase A1 gene, a reactive oxygen species detoxification factor highly expressed in response to oxidative stress and phagocytic cells. Fungal Biol. 2015;119:1322–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Cindy Staerck was recipient of the French association against cystic fibrosis Vaincre la Mucoviscidose (RF20140501104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. J. Fleury.

Additional information

PV, AG, SG, JPB and MJJF are members of the ECMM/ISHAM (European Confederation of Medical Mycology/International Society for Human and Animal Mycology) working group Fungal respiratory infections in Cystic Fibrosis (Fri-CF).

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Supplementary material 2 (PPTX 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staerck, C., Vandeputte, P., Gastebois, A. et al. Enzymatic Mechanisms Involved in Evasion of Fungi to the Oxidative Stress: Focus on Scedosporium apiospermum . Mycopathologia 183, 227–239 (2018). https://doi.org/10.1007/s11046-017-0160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-017-0160-6

Keywords

Navigation