Skip to main content

Advertisement

Log in

Pseudomonas aeruginosa Inhibits the Growth of Scedosporium and Lomentospora In Vitro

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

In vitro bacterial–fungal interaction studies in cystic fibrosis (CF) have mainly focused on interactions between bacteria and Candida. Here we investigated the effect of Pseudomonas aeruginosa on the growth of Scedosporium/Lomentospora spp. Standard suspensions of P. aeruginosa (16 non-mucoid and nine mucoid isolates) were dropped onto paper disks, placed on lawns of Lomentospora prolificans (formerly Scedosporium prolificans) strain WM 14.140 or Scedosporium aurantiacum strain WM 11.78 on solid agar. The median inhibitory activity (mIz) was calculated for each fungal–bacterial combination. As a group, mIz values for non-mucoid phenotype P. aeruginosa strains were significantly lower than those for mucoid strains (P < 0.001); 14/16 (87.5%) non-mucoid strains had mIz <1.0 against both fungi versus just 3/9 mucoid strains (33.4%) (P = 0.01). One non-mucoid (PA14) and one mucoid (CIDMLS-PA-28) P. aeruginosa strain effecting inhibition were selected for further studies. Inhibition of both L. prolificans and S. aurantiacum by these strains was confirmed using the XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) reduction assay. Following incubation with XTT, inhibition of fungal growth was determined as the ratio of absorbance in liquid culture with Pseudomonas to that in control fungal cultures. An absorbance ratio of <1.0 consistent with bacterial inhibition of fungal growth was observed for all four P. aeruginosa–fungal combinations (P < 0.05). Fluorescence microscopy, subsequent to co-culture of either fungal isolate with P. aeruginosa strain PA14 or CIDMLS-PA-28 revealed poorly formed hyphae, compared with control fungal cultures. P. aeruginosa inhibits growth of L. prolificans and S. aurantiacum in vitro, with non-mucoid strains more commonly having an inhibitory effect. As P. aeruginosa undergoes phenotype transitions from non-mucoid to the mucoid form with progression of CF lung disease, this balance may influence the appearance of Scedosporium fungi in the airways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ligon BL. Penicillin: its discovery and early development. Semin Pediatr Infect Dis. 2004;15:52–7.

    Article  PubMed  Google Scholar 

  2. Peleg AY, Hogan DA, Mylonakis E. Medically important bacterial–fungal interactions. Nat Rev Microbiol. 2010;8:340–9.

    Article  CAS  PubMed  Google Scholar 

  3. Huang R, Li M, Gregory RL. Bacterial interactions in dental biofilm. Virulence. 2011;2:435–44.

    Article  PubMed  PubMed Central  Google Scholar 

  4. McAlester G, O’Gara F, Morrissey JP. Signal mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol. 2008;57:563–9.

    Article  CAS  PubMed  Google Scholar 

  5. Azoulay E, Timsit JF, Tafflet M, For the Outcomerea Study Group, et al. Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. Chest. 2006;129:110–7.

    Article  PubMed  Google Scholar 

  6. Mowat E, Rajendran R, Williams C, et al. Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol Lett. 2010;313:96–102.

    Article  CAS  PubMed  Google Scholar 

  7. Blyth CC, Middleton PG, Harun A, et al. Clinical associations and prevalence of Scedosporium spp. in Australian cystic fibrosis patients: identification of novel risk factors? Med Mycol. 2010;48:S37–44.

    Article  CAS  PubMed  Google Scholar 

  8. LiPuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev. 2010;23:299–323.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Delhaes L, Monchy S, Fréalle E, et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS ONE. 2012;7:e36313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cystic Fibrosis Foundation. Cystic Fibrosis Foundation Patient Registry 2008 Annual Data Report. Cystic Fibrosis Foundation. 2009.

  11. Lyczak JB, Cannon CL, Pier GB. Lung infections in cystic fibrosis. Clin Microbiol Rev. 2003;15:194–222.

    Article  Google Scholar 

  12. Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol. 2001;34:91–100.

    Article  Google Scholar 

  13. Rajan S, Saiman L. Pulmonary infections in patients with cystic fibrosis. Semin Respir Infect. 2002;17:47–56.

    Article  PubMed  Google Scholar 

  14. Pihet M, Carrère J, Cimon B, et al. Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis—a review. Med Mycol. 2009;47:387–97.

    Article  PubMed  Google Scholar 

  15. Paugam A, Baixench MT, Demazes-Dufeuet N, et al. Characteristics and consequences of airway colonization by filamentous fungi in 201 adult patients with cystic fibrosis in France. Med Mycol. 2010;48(Suppl 1):S32–6.

    Article  PubMed  Google Scholar 

  16. Amin R, Dupuis A, Aaron SD, Ratjen F. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest. 2010;137:171–6.

    Article  PubMed  Google Scholar 

  17. Blyth CC, Harun A, Middleton PG, et al. Detection of occult Scedosporium species in respiratory tract specimens from patients with cystic fibrosis by use of selective media. J Clin Microbiol. 2010;48:314–6.

    Article  CAS  PubMed  Google Scholar 

  18. Lackner M, de Hoog S, Yang L, et al. Proposed nomenclature for Pseudallescheria, Scedosporium and related genera. Fungal Divers. 2014;67:1–10.

    Article  Google Scholar 

  19. Husain S, Munoz P, Forrest G, et al. Infections due to Scedosporium apiospermum and Scedosporium prolificans in transplant recipients: clinical characteristics and impact of antifungal agent therapy on outcome. Clin Infect Dis. 2005;40:89–99.

    Article  PubMed  Google Scholar 

  20. Chotirmall SH, O’Donoghue E, Bennett K, et al. Sputum Candida albicans presages FEV1 decline and hospital-treated exacerbations in cystic fibrosis. Chest. 2010;138:1186–95.

    Article  PubMed  Google Scholar 

  21. de Vrankrijker AM, van der Ent CK, van Berkhout FT, et al. Aspergillus fumigatus colonization in cystic fibrosis: implications for lung function? Clin Microbiol Infect. 2010;17:1381–6.

    Article  PubMed  Google Scholar 

  22. Schwarz C, Brandt C, Antwieler E, et al. Prospective multicentre German study on pulmonary colonization with Scedosporium/Lomentospora in cystic fibrosis: epidemiology and new association factors. PLoS ONE. 2017;12:e0171485.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cystic fibrosis in Australia 2014. 17th annual report of the Australian Cystic Fibrosis Data Registry. 2016. Cystic Fibrosis Australia, North Ryde, Australia (website: www.cysticfibrosis.org.au/cfa).

  24. Gibson J, Sood A, Hogan DA. Pseudomonas aeruginosaCandida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol. 2009;75:504–13.

    Article  CAS  PubMed  Google Scholar 

  25. Bandara H, Yau JY, Watt RM, Jin LJ, Samaranayake LP. Pseudomonas aeruginosa inhibits in vitro Candida biofilm development. BMC Microbiol. 2010;10:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rella A, Yang MW, Gruber J, et al. Pseudomonas aeruginosa inhibits the growth of Cryptococcus species. Mycopathologia. 2012;173:451–61.

    Article  CAS  PubMed  Google Scholar 

  27. Treat J, James WD, Nachamkin I, Seykora JT. Growth inhibition of Trichophyton species by Pseudomonas aeruginosa. Arch Dermatol. 2007;143:61–4.

    Article  PubMed  Google Scholar 

  28. Kaur J, Pethani BP, Kumar S, et al. Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients. Front Microbiol. 2015;6:1–13.

    Article  CAS  Google Scholar 

  29. Heath CH, Slavin MA, Sorrell T, et al. Population-based surveillance for scedosporiosis in Australia: epidemiology, disease manifestations and emergence of Scedosporium aurantiacum infection. Clin Microbiol Infect. 2009;15:689–93.

    Article  CAS  PubMed  Google Scholar 

  30. Rahme LG, Stevens EJ, Wolfort SF, et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science. 1995;268:1899–902.

    Article  CAS  PubMed  Google Scholar 

  31. Choi JY, Sifri CD, Goumnerov BC, et al. Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis. J Bacteriol. 2002;184:952–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gibson LF, Khoury JT. Storage and survival of bacteria by ultra-freeze. Lett Appl Microbiol. 1986;3:127–9.

    Article  Google Scholar 

  33. Hawser DP, Norris H, Jessup CJ, Ghannoum MA. Comparison of a 2,3-bis (2-methoxy-4-nitro-5sulfophenyl)-5-[(phenyl-amino)carbonyl]-2H-tetrazolium hydroxide (XTT) colorimetric method with the standardized National Committee for Clinical Laboratory Standards method of testing clinical yeast isolates for susceptibility to antifungal agents. J Clin Microbiol. 1998;36:1450–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mowat E, Butcher J, Lang S, Williams C, Ramage G. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J Med Microbiol. 2007;56:1205–12.

    Article  CAS  PubMed  Google Scholar 

  35. Lewis RE, Wiederhold NP, Klepser ME. In vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium spp. Antimicrob Agents Chemother. 2005;49:945–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moss BJ, Kim Y, Nandakumar MP, Marten MR. Quantifying metabolic activity of filamentous fungi using a colorimetric XTT assay. Biotechnol Prog. 2008;24:780–3.

    Article  CAS  PubMed  Google Scholar 

  37. Essary BD, Marshall PA. Assessment of FUN-1 vital dye staining: yeast with a block in the vacuolar sorting pathway have impaired ability to form CIVS when stained with FUN-1 fluorescent dye. J Microbiol Methods. 2009;78:208–12.

    Article  CAS  PubMed  Google Scholar 

  38. Molecular probes. Product information: probes for yeast viability. MP 07009. 2001.

  39. Millard PJ, Roth BL, Thi HP, Yue ST, Haugland RP. Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microbiol. 1997;63:2897–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kerr S. Bacterial fungal interactions in the cystic fibrosis lung. M.Sc.(R.) thesis, University of Glasgow, 2013.

  41. Antachopoulos C, Meletiadis J, Roilides E, Sein T, Walsh TJ. Rapid susceptibility testing of medically important zygomycetes by XTT assay. J Clin Microbiol. 2006;44:553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cimon B, Carrère J, Vinatier JF, et al. Clinical significance of Scedosporium apiospermum in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2000;19:53–6.

    Article  CAS  PubMed  Google Scholar 

  43. Sudfield CR, Dasenbrook EC, Merz WG, Carroll KC, Boyle MP. Prevalence and risk factors for recovery of filamentous fungi in individuals with cystic fibrosis. J Cyst Fibros. 2010;9:110–6.

    Article  Google Scholar 

  44. Balajee SA, Marr KA. Conidial viability assay for rapid susceptibility testing of Aspergillus species. J Clin Microbiol. 2002;40:2741–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marr K, Khododoust M, Black M, Balajee S. Early events in macrophage killing of Aspergillus fumigatus conidia: development of a new flow cytometric viability assay. Clin Diagn Lab Immunol. 2001;8:1240–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hua SST, Brandl MT, Hernlem B, Eng JG, Sarreal SBL. Fluorescent viability stains to probe the metabolic status of aflatoxigenic fungus in dual culture of Aspergillus flavus and Pichia anomala. Mycopathologia. 2011;171:133–8.

    Article  CAS  PubMed  Google Scholar 

  47. Wiederhold NP, Lewis RE. Antifungal activity against Scedosporium species and novel assays to assess antifungal pharmacodynamics against filamentous fungi. Med Mycol. 2009;47:422–32.

    Article  CAS  PubMed  Google Scholar 

  48. Hogan DA, Kolter R. PseudomonasCandida interactions: an ecological role of virulence factors. Science. 2002;296:2229–32.

    Article  CAS  PubMed  Google Scholar 

  49. Shirtliff ME, Peters BM, Jabra-Rizk MA. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett. 2009;299:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre for Infectious Diseases and Microbiology–Public Health (CIDM-PH) Facility, Westmead Hospital [stipend to S.P]. The authors thank the physicians and staff at the Cystic Fibrosis unit at Westmead Hospital, Westmead. We also thank Ms. Sue Sleiman and Ms. Krystyna Maszewska for assistance with culture and identification of Scedosporium isolates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon C.-A. Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S.CA., Patel, S., Meyer, W. et al. Pseudomonas aeruginosa Inhibits the Growth of Scedosporium and Lomentospora In Vitro. Mycopathologia 183, 251–261 (2018). https://doi.org/10.1007/s11046-017-0140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-017-0140-x

Keywords

Navigation