The Effectiveness of Voriconazole in Therapy of Candida glabrata’s Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression

Abstract

Candida glabrata is one of most prevalent yeast in fungal infections, especially in immunocompromised patients. Its azole resistance results in a low therapeutic response, particularly when associated with biofilms. The main goal of this work was to study the effectiveness of voriconazole (Vcz) against C. glabrata biofilms oral pathologies, as esophageal or oropharyngeal candidiasis. Antifungal susceptibilities were determined in pre-formed 24-h-biofilms and ERG genes expression was determined by qRT-PCR. Protein quantification was performed using BCA® Kit, carbohydrate was estimated according to the Dubois assay and β-1,3 glucans concentration were determined using Glucatell® kit. Finally, ergosterol, Vcz, and fluconazole (Flu) concentrations within the biofilm matrices were determined by RP-HPLC. Results showed that C. glabrata biofilms were more susceptible to Vcz than to Flu and that ERG genes expression evidenced an overexpression of the three ERG genes in the presence of both azoles. The matrix content presented a remarked decrease in proteins and an increase in carbohydrates, namely β-1,3 glucans. Ergosterol was successfully detected and quantified in the biofilm matrices, with no differences in all the considered conditions. Vcz demonstrated better diffusion through the biofilms and better cell penetration capacities, than Flu, indicating that the structure of the drug molecule fully influences its dissemination through the biofilm matrices. This work showed that Vcz is notably more effective than Flu for the treatment of resistant C. glabrata oral biofilms, which demonstrates a clinical relevance in its future use for the treatment of oropharyngeal/esophageal candidiasis caused by this species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Eggimann P, Garbino JPD. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis. 2003;3:685–702.

    Article  PubMed  Google Scholar 

  2. 2.

    Shao P, Huang L, Hsueh P. Recent advances and challenges in the treatment of invasive fungal infections. Int J Antimicrob Agents. 2007;30:487–95.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Kaur R, Domergue R, Zupancic ML, Cormack BP. A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol. 2005;8:378–84.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Pfaller M, Diekema D. Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect. 2004;10:11–23.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bethea EK, Carver BJ, Montedonico AE, Reynolds TB. The inositol regulon controls viability in Candida glabrata. Microbiology. 2010;156:452–62.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hasosah MY, Showail M, Al-Sahafi A, Satti M, Jacobson K. Esophageal candidiasis in an immunocompetent girl. World J Pediatr. 2009;5:152–4.

    Article  PubMed  Google Scholar 

  7. 7.

    Mimidis K, Papadopoulos V, Margaritis V, Thomopoulos K, Gatopoulou A, Nikolopoulou V, et al. Predisposing factors and clinical symptoms in HIV-negative patients with Candida oesophagitis: are they always present? Int J Clin Pract. 2005;59:210–3.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Marti CJ, Alvarez RM. Herpes simplex esophagitis associated to Candida albicans in an immunocompetent host. An Med Interna. 2004;21:312.

    Google Scholar 

  9. 9.

    Sathyanarayanan V, Razak A, Prabhu MM, Saravu K, Ganesh PC, Rao AK. A case report of herpetic and candidal esophagitis in an immunocompetent adult. Asian Pac J Trop Biomed. 2011;1:251–2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Xu S, Shen J. Newer antifungal agents micafungin and voriconazole for fungal infection prevention during hematopoietic cell transplantation: a meta-analysis. Eur Rev Med Pharmacol Sci. 2016;20:381–90.

    PubMed  Google Scholar 

  11. 11.

    Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother. 2005;49:668–79.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ma C, Li F, Shi L, Hu Y, Wang Y, Huang M, et al. Surveillance study of species distribution, antifungal susceptibility and mortality of nosocomial candidemia in a tertiary care hospital in China. BMC Complement Altern Med. 2013;13:337.

    Article  Google Scholar 

  13. 13.

    Neofytos D, Huprikar S, Reboli A, Schuster M, Azie N, Franks B, et al. Treatment and outcomes of Candida osteomyelitis: review of 53 cases from the PATH Alliance® registry. Eur J Clin Microbiol Infect Dis. 2014;33:135–41.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Pawar P, Kashyap H, Malhotra S, Sindhu R. Hp-β-CD voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment. Biomed Res Int. 2013;2013:341218.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Chang T, Ho M, Yang Y, Lo P, Lin P, Wang A, et al. Distribution and drug susceptibilities of Candida species causing candidemia from a medical center in central Taiwan. J Infect Chemother. 2013;19:1065–71.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Sean M, Seenu M, William F, Gaurav K, Michael D, Gilbert M. Management of endogenous fungal endophthalmitis with voriconazole and caspofungin. Am J Ophthalmol. 2005;139:135–40.

    Article  Google Scholar 

  17. 17.

    Chen K, Wu W, Sun M, Lai C, Chao A. Endogenous fungal endophthalmitis: causative organisms, management strategies, and visual acuity outcomes. Am J Ophthalmol. 2012;154:213–4.

    Article  PubMed  Google Scholar 

  18. 18.

    Chang Y, Yang C, Lee F, Lee S. Voriconazole for Candida endophthalmitis. Ophthalmology. 2012;119:2414–5.

    Article  PubMed  Google Scholar 

  19. 19.

    Pfaller MA, Messer SA, Rhomberg PR, Jones RN, Castanheira M. In vitro activities of isavuconazole and comparator antifungal agents tested against a global collection of opportunistic yeasts and molds. J Clin Microbiol. 2013;51:2608–16.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Chander J, Singla N, Sidhu S, Gombar S. Epidemiology of Candida blood stream infections: experience of a tertiary care centre in North India. J Infect Dev Ctries. 2013;7:670–5.

    Article  PubMed  Google Scholar 

  21. 21.

    Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America. Clin Infect Dis. 2015;62:e1–50.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Williams DW, Wilson MJ, Lewis MAO, Potts AJC. Identification of Candida species by PCR and restriction fragment length polymorphism analysis of intergenic spacer regions of ribosomal DNA. J Clin Microbiol. 1995;33:2476–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Silva S, Negri M, Henriques M, Oliveira R, Williams D, Azeredo J. Silicone colonization by non-Candida albicans Candida species in the presence of urine. J Med Microbiol. 2010;59:747–54.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    DuBois M, Gilles K, Hamilton J, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–6.

    CAS  Article  Google Scholar 

  25. 25.

    Marin S, Morales H, Ramos AJ, Sanchis V. Evaluation of growth quantification methods for modelling the growth of Penicillium expansum in an apple-based medium. J Sci Food Agric. 2006;86:1468–74.

    CAS  Article  Google Scholar 

  26. 26.

    Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–15.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Rodrigues CF, Silva S, Azeredo J, Henrique M. Detection and quantification of fluconazole within Candida glabrata biofilms. Mycopathologia. 2015;179:391–5.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Ibrahim A, Eldin B, Ibrahim A, Eldin B, Shalaby A. Determination of voriconazole and its degradation products in pharmaceutical formulations using high performance liquid chromatography with ultra–violet detection. Eurasian J Anal Chem. 2010;5:254–64.

    Google Scholar 

  29. 29.

    Sadasivudu P, Shastri N, Sadanandam M. Development and validation of RP-HPLC and UV methods of analysis for fluconazole in pharmaceutical solid dosage forms. Int J ChemTech Res. 2009;1:1131–6.

    CAS  Google Scholar 

  30. 30.

    Fukuoka T, Johnson DA, Winslow CA, de Groot MJ, Burt C, Hitchcock CA, Filler SG. Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei. Antimicrob Agents Chemother. 2003;47:1213–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Gallagher J, Dodds Ashley E, Drew R, Perfect J. Antifungal pharmacotherapy for invasive mould infections. Expert Opin Pharmacother. 2003;4:147.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    de Groot PWJ, Kraneveld Ea, Yin QY, Dekker HL, Gross U, Crielaard W, et al. The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell. 2008;7:1951–64.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Fidel P, Vazquez J, Sobel J. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev. 1999;12:80–96.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Arnold T, Dotson E, Sarosi G, Hage C. Traditional and emerging antifungal therapies. Proc Am Thorac Soc. 2010;7:222–8.

    Article  PubMed  Google Scholar 

  35. 35.

    Alcazar-Fuoli L, Mellado E. Current status of antifungal resistance and its impact on clinical practice. Br J Haematol. 2014;166:471–84.

    Article  PubMed  Google Scholar 

  36. 36.

    West L, Lowman D, Mora-Montes H, Grubb S, Murdoch C, Thornhill M, et al. Differential virulence of Candida glabrata glycosylation mutants. Biol Chem. 2013;288:22006–18.

    CAS  Article  Google Scholar 

  37. 37.

    Aghdam MRF, Sund S. Invasive esophageal Candidiasis with chronic mediastinal abscess and fatal pneumomediastinum. Am J Case Rep. 2016;17:466–71.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wilheim AB, Miranda-Filho DDB, Nogueira RA, Rêgo RS, Lima KDM, Pereira LM (2009) The resistance to fluconazole in patients with esophageal candidiasis. Arq Gastroenterol. 2009;46:32–7.

    Article  PubMed  Google Scholar 

  39. 39.

    European Committee on Antimicrobial Susceptibility Testing – Antifungal agents, Breakpoint tables for interpretation of MICs, Version 8.0, valid from 2015-11-16. http://www.eucast.org/clinical_breakpoints/

  40. 40.

    Kowalsdy S, Dixon D. Fluconazole: a new antifungal agent. Clin Pharm. 1990;10:179–90.

    Google Scholar 

  41. 41.

    Janssen P, Vanden J, Bossche H. Mode of action cytochrome P450 monooxygenase inhibitors. Focus on azole derivates. Arch Pharm Chem Sci. 1987;15:23–40.

    CAS  Google Scholar 

  42. 42.

    Ferrari S, Sanguinetti M, De Bernardis F, Torelli R, Posteraro B, Vandeputte P, et al. Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice. Antimicrob Agents Chemother. 2011;55:1852–60.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Al-fattani Ma, Douglas LJ. Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother. 2004;48:3291–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    De Luca C, Guglielminetti M, Ferrario A, Calabrò M, Casari E. Candidemia: species involved, virulence factors and antimycotic susceptibility. New Microbiol. 2012;35:459–68.

    PubMed  Google Scholar 

  45. 45.

    Grandesso S, Sapino B, Mazzuccato S, Solinas M, Bedin M, D’Angelo M, et al. Study on in vitro susceptibility of Candida spp. isolated from blood culture. Infect Med. 2012;20:25–30.

    Google Scholar 

  46. 46.

    Lewis R, Kontoyiannis D, Darouiche R, Raad I, Prince R. Antifungal activity of amphotericin B, fluconazole, and voriconazole in an in vitro model of Candida catheter-related bloodstream infection. Antimicrob Agents Chemother. 2002;46:3499–505.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Donlan R, Costerton J. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Osawa K, Shigemura K, Yoshida H, Fujisawa M, Arakawa S. Candida urinary tract infection and Candida species susceptibilities to antifungal agents. J Antibiot (Tokyo). 2013;66:651–4.

    CAS  Article  Google Scholar 

  49. 49.

    Narita A, Muramatsu H, Sakaguchi H, Doisaki S, et al. Correlation of CYP2C19 phenotype with voriconazole plasma concentration in children. J Pediatr Hematol Oncol. 2013;35(5):e21.

    Article  Google Scholar 

  50. 50.

    Caira M, Alkhamis K, Obaidat R. Preparation and crystal characterization of a polymorph, a monohydrate, and an ethyl acetate solvate of the antifungal fluconazole. J Pharm Sci. 2004;93:601–61.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Henry K, Nickels J, Edlind T. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother. 2000;44:2693–700.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Berila N, Hyroššová P, Subík J. Oxidative stress response and virulence factors in Candida glabrata clinical isolates. Folia Microbiol (Praha). 2011;56:116–21.

    CAS  Article  Google Scholar 

  53. 53.

    Tzu Shan N, Desa MNM, Sandai D, Chong PP, Than LTL. Growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of Candida glabrata are affected by different glucose concentrations. Infect Genet Evol Elsevier B.V. 2015;40:331–8.

    Google Scholar 

  54. 54.

    Cuéllar-Cruz M, López-Romero E, Ruiz-Baca E, Zazueta-Sandoval R. Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Curr Microbiol. 2014;69:733–9.

    Article  PubMed  Google Scholar 

  55. 55.

    Jandric Z, Gregori C, Klopf E, Radolf M, Schüller C. Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway. Front Microbiol. 2013;4:350.

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Miyazaki T, Kohno S. ER stress response mechanisms in the pathogenic yeast Candida glabrata and their roles in virulence. Virulence. 2014;5:365–70.

    Article  PubMed  Google Scholar 

  57. 57.

    Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, et al. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog. 2012;8:e1002848.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, et al. Novel entries in a fungal biofilm matrix encyclopedia. MBio. 2014;5:1–13.

    Article  Google Scholar 

  59. 59.

    Lewis RE, Viale P, Kontoyiannis DP. The potential impact of antifungal drug resistance mechanisms on the host immune response to Candida. Virulence. 2012;3:368–76.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Programa Operacional, Fatores de competitividade—COMPETE and by national funds through FCT—Fundação para a Ciência e a Tecnologia on the scope of the projects FCT [PTDC/SAU-MIC/119069/2010], [RECI/EBB-EBI/0179/2012], [PEst-OE/EQB/LA0023/2013] and Célia F. Rodrigues’ [SFRH/BD/93078/2013] PhD Grant. The authors thank the Project “BioHealth—Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2—O Novo Norte), QREN, FEDER. The authors would like to acknowledge Pfizer®, S.A. for the kindly donation of Voriconazole and Fluconazole.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Célia F. Rodrigues.

Ethics declarations

Conflict of interest

All the authors declare that there is no financial/personal interest or belief that could affect their objectivity.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, C.F., Gonçalves, B., Rodrigues, M.E. et al. The Effectiveness of Voriconazole in Therapy of Candida glabrata’s Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression. Mycopathologia 182, 653–664 (2017). https://doi.org/10.1007/s11046-017-0135-7

Download citation

Keywords

  • Candidiasis
  • Antifungal
  • Resistance
  • Matrix
  • Voriconazole
  • Candida