Skip to main content

Advertisement

Log in

In Vitro Susceptibility of Sporothrix brasiliensis to Essential Oils of Lamiaceae Family

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

This study evaluated the chemical, cytotoxic and anti-Sporothrix brasiliensis properties of commercial essential oils of rosemary (Rosmarinus officinalis L.), oregano (Origanum vulgare L.) and marjoram (Origanum majorana L.). Chemical composition of the oils was identified through gas chromatography with flame ionization detector, and cytotoxicity was performed through MTT assay in VERO cell line. Anti-S. brasiliensis activity was performed according to the CLSI M38-A2 guidelines using isolates obtained from cats and dogs. The major compounds found were carvacrol in the oregano oil (73.9 %) and 1,8-cineole in rosemary and marjoram oils (49.4 and 20.9 %, respectively). All S. brasiliensis isolates were susceptible to the plant oils, including itraconazole-resistant ones. Marjoram and rosemary oils showed MIC90 of 0.56 and 1.12 mg ml−1, and MFC90 of 4.5 and 9 mg ml−1, respectively. For oregano oil, a strong antifungal activity was observed with MIC90 and MFC90 values ≤0.07 mg ml−1. The weakest cytotoxicity was observed for rosemary oil. Further studies should be undertaken to evaluate the safety and efficacy of these essential oils in sporotrichosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Marimon R, Cano J, Gené J, Sutton DA, Kawasaki M, Guarro J. Sporothrix brasiliensis, S. globosa and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol. 2007;45:3198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rodrigues AM, de Melo TM, de Hoog GS, Schubach TMP, Pereira AS, Fernandes GF, Bezerra LML, Felipe MS, Camargo ZP. Phylogenetic analysis reveals a high prevalence of Sporothrix brasiliensis in feline sporotrichosis outbreaks. PLoS Negl Trop Dis. 2013;. doi:10.1371/journal.pntd.0002281.

    Google Scholar 

  3. Montenegro H, Rodrigues AM, Dias MAG, da Silva EA, Bernardi F, Camargo ZP. Feline sporotrichosis due to Sporothrix brasiliensis: an emerging animal infection in São Paulo, Brazil. BMC Vet Res. 2014;. doi:10.1186/s12917-014-0269-5.

    PubMed  PubMed Central  Google Scholar 

  4. Rodrigues AM, de Hoog GS, Pires DC, Brilhante RSN, Sidrim JJC, Gadelha MF, Colombro AL, Camargo ZP. Genetic diversity and antifungal susceptibility profiles in causative agents of sporotrichosis. BMC Infect Dis. 2014;. doi:10.1186/1471-2334-14-219.

    Google Scholar 

  5. Stopiglia CDO, Magagnin CM, Castrillón MR, Mendes SD, Heidrich D, Valente P, Scroferneker ML. Antifungal susceptibilities and identification of species of the Sporothrix schenckii complex isolated in Brazil. Med Mycol. 2014;. doi:10.3109/13693786.2013.818726.

    Google Scholar 

  6. Cleff MB, Meinerz AR, Faria RO, Xavier MO, Santin R, Nascente PS, Rodrigues MR, Meireles MCA. Atividade inibitória do óleo essencial de orégano em fungos de importância médica e veterinária. Arq Bras Med Vet Zootec. 2010;62:1291–4.

    Article  Google Scholar 

  7. Souza NAB, Lima EO, Guedes DN, Pereira FO, Souza EL, Sousa FB. Efficacy of Origanum essential oils for inhibition of potentially pathogenic fungi. Braz J Pharm Sci. 2010;. doi:10.1590/s1984-82502010000300013.

    Google Scholar 

  8. Carvalinho S, Costa AM, Coelho AC, Martins E, Sampaio A. Susceptibilities of Candida albicans mouth isolates to antifungal agents, essential oils and mouth rises. Mycopathologia. 2012;. doi:10.1007/s11046-012-9520-4.

    Google Scholar 

  9. Guerra-Boone L, Alvarez-Román R, Salazar-Aranda R, Torres-Cirio A, Rivas-Galindo VM, Torres NW, González G, Pérez-López LA. Antimicrobial and antioxidant activities and chemical characterization of essential oils of Thymus vulgaris, Rosmarinus officinalis, and Origanum majorana from northeastern México. Pak J Pharm Sci. 2015;28:363–9.

    CAS  PubMed  Google Scholar 

  10. Fonseca AOS, Pereira DIB, Jacob RG, Maia Filho FS, Oliveira DH, Maroneze BP, Valente JSS, Osorio LG, Botton SA, Meireles MCA. In vitro susceptibility of Brazilian Pythium insidiosum isolates to essential oils of some Lamiaceae family species. Mycopathologia. 2015;. doi:10.1007/s11046-014-9841-6.

    PubMed  Google Scholar 

  11. Luqman S, Dwivedi GR, Darokar MP, Kalra A, Khanuja SPS. Potential of rosemary oil to be used in drug-resistant infections. Altern Ther Health Med. 2007;13:54–9.

    PubMed  Google Scholar 

  12. Cleff MB, Meinerz AR, Sallis ES, Antunes TA, Mattei A, Rodrigues MRA, Meireles MCA, Mello JRB. Toxicidade pré-clínica em doses repetidas do oleo essencial de Origanum vulgare L. (orégano) em ratas Wistar. Lat Am J Pharm. 2008;27:704–9.

    CAS  Google Scholar 

  13. Couto CSF, Raposo NRB, Rozental S, Borba-Santos LP, Bezerra LML, de Almeida PA, Brandão MAF. Chemical composition and antifungal properties of essential oil of Origanum vulgare Linnaeus (Lamiaceae) against Sporothrix schenckii and Sporothrix brasiliensis. Trop J Pharm Res. 2015;. doi:10.4314/tjpr.v14i7.12.

    Google Scholar 

  14. Veiga VF Jr, Pinto AC, Maciel MAM. Plantas medicinais: cura segura? Quím Nova. 2005;28:519–28.

    Article  CAS  Google Scholar 

  15. Cleff MB, Madrid I, Meinerz AR, Meireles MCA, de Mello JRB, Rodrigues MR, Escareño JJH. Essential oils against Candida spp.: in vitro antifungal activity of Origanum vulgare. Afr J Microbiol Res. 2013;. doi:10.5897/AJMR12.1149.

    Google Scholar 

  16. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;. doi:10.1016/0022-1759(83)90303-4.

    PubMed  Google Scholar 

  17. Rodrigues AM, de Hoog GS, Camargo ZP. Genotyping species of the Sporothrix schenckii complex by PCR-RFLP of calmodulin. Diagn Microbiol Infect Dis. 2014;. doi:10.1016/j.diagmicrobio.2014.01.004.

    PubMed  Google Scholar 

  18. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. 3rd ed. Wayne: M38-A2 CLSI; 2008. p. 144.

    Google Scholar 

  19. Maida IA, Nostro L, Pesavento G, Barnabei M, Calonico C, Perrin E, Chiellini C, Fondi M, Mengoni A, Maggini V, Vannacci A, Gallo E, Bilia AR, Flamini G, Gori L, Firenzuoli F, Fani R. Exploring the anti-Burkholderia cepacia complex activity of essential oils: a preliminary analysis. Evid Based Complement Altern Med. 2014;. doi:10.1155/2014/573518.

    Google Scholar 

  20. Celiktas OY, Kocabas EEH, Bedir E, Sukan FV, Ozek T, Baser KHC. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem. 2007;. doi:10.1016/j.foodchem.2005.10.011.

    Google Scholar 

  21. Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by tome-kill, lysis, leakage and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother. 2002;. doi:10.1128/AAC.46.6.1914-1920.2002.

    PubMed  PubMed Central  Google Scholar 

  22. Jiang Y, Wu N, Fu YJ, Wang W, Luo M, Zhao CJ, Zu YG, Liu XL. Chemical composition and antimicrobial activity of the essential oil of rosemary. Environ Toxicol Pharmacol. 2011;32:63–8.

    Article  CAS  PubMed  Google Scholar 

  23. Marimon R, Serena C, Gene J, Cano J, Guarro J. In vitro antifungal susceptibilities of five species of Sporothrix schenckii. Antimicrob Agents Chemother. 2008;52:732–4.

    Article  CAS  PubMed  Google Scholar 

  24. Vijayan P, Raghu C, Ashok G, Dhanaraj SA, Suresh B. Antiviral activity of medicinal plants of Nilgiris. Indian J Med Res. 2004;120:24–9.

    CAS  PubMed  Google Scholar 

  25. Nogueira RMB, Andrade SF. Manual de toxicologia veterinária. 1st ed. São Paulo: Roca; 2011.

    Google Scholar 

  26. Cleff MB, Meinerz ARM, Schuch LFD, Rodrigues MRA, Meireles MCA, Mello JRB. Atividade in vitro do óleo essencial de Origanum vulgare frente à Sporothrix schenckii. Arq Bras Med Vet Zootec. 2008;60:513–6.

    Article  CAS  Google Scholar 

  27. Al-Harbi NO. Effect of marjoram extract treatment on the cytological and biochemical changes induced by cyclophosphamide in mice. J Med Plants Res. 2011;5:5479–85.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Zoilo Pires de Camargo (Universidade Federal de São Paulo, São Paulo/SP, Brazil) for the biomolecular analysis of the clinical isolates. The authors thank the Brazilian institute of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support [Process: 7740770418684580—Universal 14/2012]. The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and to Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for student and research scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Bressan Waller.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waller, S.B., Madrid, I.M., Silva, A.L. et al. In Vitro Susceptibility of Sporothrix brasiliensis to Essential Oils of Lamiaceae Family. Mycopathologia 181, 857–863 (2016). https://doi.org/10.1007/s11046-016-0047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0047-y

Keywords

Navigation