, Volume 181, Issue 1–2, pp 1–7 | Cite as

Microbiota–Gut–Brain Axis: Yeast Species Isolated from Stool Samples of Children with Suspected or Diagnosed Autism Spectrum Disorders and In Vitro Susceptibility Against Nystatin and Fluconazole

  • A. Serda KantarciogluEmail author
  • Nuri Kiraz
  • Ahmet Aydin


Autism spectrum disorder (ASD) is a general term for a group of complex neurodevelopmental disorders of brain development that limits a person’s ability to function normally. Etiology has not been clearly defined up to date. However, gut microbiota and the bidirectional communication between the gastrointestinal tract and brain, the so-called microbiota–gut–brain axis, are hypothesized, which may be involved in the etiology of several mental disorders. Recent reports suggest that Candida, particularly Candida albicans, growth in intestines may cause lower absorption of carbohydrates and minerals and higher toxin levels which are thought to contribute autistic behaviors. The aim of this study was to identify the 3-year deposited yeasts isolated from stool samples of children with diagnosed or suspected ASD and to determine in vitro activity of nystatin and fluconazole against these isolates using Clinical Laboratory Standards Institute M27-A3 guidelines. A 17-year retrospective assessment was also done using our laboratory records. Among the species identified, intrinsically fluconazole-resistent Candida krusei (19.8 %) and Candida glabrata (14.8 %) with elevated MICs were remarkable. Overall, C. albicans (57.4 %) was the most commonly isolated species in 17 years. The species identification and/or antifungal susceptibility tests have to be performed using the strain isolated from stool sample, to select the appropriate antifungal agent, if antimycotic therapy is needed.


Nystatin Fluconazole Gut microbiota Microbiota–gut–brain axis Autism spectrum disorders 


Compliance with Ethical Standards

Ethical considerations

The study protocol was approved by Istanbul University Cerrahpasa Medical Faculty Ethics Committee (date: 02.10.2014; No. 41302).

Conflict of interest



  1. 1.
    Autism fact sheet. National Institute of neurological disorders and stroke. 2014.
  2. 2.
    Watts TJ. The pathogenesis of autism. Clin Med Pathol. 2008;1(99):103.Google Scholar
  3. 3.
    Tomova A, Husarova V, Lakatosova S, et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav. 2015;138:179–87.CrossRefPubMedGoogle Scholar
  4. 4.
    Caronna EB, Milunsky JM, Tager-Flusberg H. Autism spectrum disorders: clinical and research frontiers. Arch Dis Child. 2008;93(6):518–23.CrossRefPubMedGoogle Scholar
  5. 5.
    Allely CS, Gilberg C, Wilson P. Neurobiological abnormalities in the first few years of life in individuals later diagnosed with autism spectrum disorder: a review of recent data. Behav Neurol. 2014;2014:210780.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Montiel-Castro AJ, Gonzales-Cervantes RM, Bravo-Ruiseco G, Pacheco-Lopez G. The microbiota–gut–brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci. 2013;7:1–16.CrossRefGoogle Scholar
  7. 7.
    Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms and therapeutic potential. Adv Exp Med Biol. 2014;817:373–403.CrossRefPubMedGoogle Scholar
  8. 8.
    Foster JA, McVey Neufeld KA. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Cryan JE, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci. 2012;13(10):701–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:22–34.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Norris S. Potential causes of autism spectrum disorders. Rep Can Libr Parlim. 2006:4–5.Google Scholar
  12. 12.
    Reichelt KL, Knivsberg AM. The possibility and probability of a gut-to-brain connection in autism. Ann Clin Psychiatry. 2009;21(4):205–2011.PubMedGoogle Scholar
  13. 13.
    Burrus CJ. A biochemical rationale for the interaction between gastrointestinal yeast and autism. Med Hypothesis. 2012;79(6):784–5.CrossRefGoogle Scholar
  14. 14.
    Hazen KC, Howell SA. Candida, Cryptococcus and other yeasts of medical importance. In: Murray R, Baron EJ, Jorgensen JH, Phaller MA, Yolken RH, editors. Manual of clinical microbiology, vol. 9., ASM PressDC: Washington; 2007. p. 1762–88.Google Scholar
  15. 15.
    Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, in 3rd Informal Supplement M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.Google Scholar
  16. 16.
    CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Fourth International Supplement, M27-A3, Wayne, PA: Clinical and Laboratory Standards Institute, 2012: 32.Google Scholar
  17. 17.
    Ellepola ANB, Samaranayake LP. Adhesion of oral C. albicans to human buccal epithelial cells following limited exposure to antifungal agents. J Oral Pathol Med. 1998;27(7):325–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Ellepola ANB, Samaranayake LP. The in vitro post-antifungal effect of nystatin on Candida species of oral origin. J Oral Pathol Med. 1999;28(3):112–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Arikan S, Ostrosky-Zeichner L, Lozano-Chiu M, et al. In vitro activity of nystatin compared with those of liposomal nystatin, amphotericin B, and fluconazole against clinical Candida isolates. J Clin Microbiol. 2002;40(4):1406–12.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Ellepola ANB, JosepH BK, Chandy R, Khan ZU. The postantifungal effect of nystatin and its impact on adhesion attributes of oral Candida dubliniensis isolates. Mycoses. 2014;57(1):56–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Ellepola ANB, Samaranayake LP. Impact of brief and sequential exposure to nystatin on the germ tube formation and cell surface hydrophobicity of oral Candida albicans isolates from human immunodeficiency virus-infected patients. Med Princ Pract. 2014;23(4):307–12.CrossRefPubMedGoogle Scholar
  22. 22.
    Farmer AD, Randall HA, Aziz Q. It’s a gut feeling: how the gut microbiota affects the state of mind. J Physiol. 2014;592(Pt 14):2981–8.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Carabotti M, Scirocco A, Maselli MA, Severi C. The gut brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–9.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Van de Sande MMH, van Buul VJ, Bruns FJPH. Autism and nutrition: the role of the gut–brain axis. Nutr Res Rev. 2014;27(2):199–214.CrossRefGoogle Scholar
  25. 25.
    Mayer EA, Padua D, Tillisch K. Altered brain–gut axis in autism: comorbidity or causative mechanisms ? BioEssays. 2014;36(10):933–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Soyucen E, Gulcan A, Aktuglu-Zeybek AÇ, Onal H, Kiykim E, Aydin A. Differences in gut microbiota of healthy children and those with type 1 diabetes. Pediatr Int. 2014;56(3):336–43.CrossRefPubMedGoogle Scholar
  27. 27.
    Gosiewski T, Salamon D, Spoza M, Sroka A, Malecki MT, Bulanda M. Quantitative evaluation of fungi of the genus Candida in the feces of adult patients, with type 1 and 2 diabetes—a pilot study. Gut Pathog. 2014;6(1):43–7.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE. 2013;8(6):e66019.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Ekiel A, Aptekorz M, Kazek B, Wiechula B, Wilk I, Martirosian G. Intestinal microflora of autistic children. Med Dosw Mikrobiol. 2010;62(3):237–43.PubMedGoogle Scholar
  30. 30.
    Rozkiewich D, Daniluk T, Sciepuk M, Kurzqkowska B, Oldak E, Zaremba ML. Prevalence of Candida albicans in stool of hospitalized children in 2003 with or without diarrhea from the Bialystok region. Prz Epidemiol. 2005;59(1):43–51.Google Scholar
  31. 31.
    Agirbasli H, Keceli SAO, Gedikoglu G. Fecal fungal flora of pediatric healthy volunteers and immunosuppressed patients. Mycopathologia. 2005;159:515–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Klingspor L, Stitzing G, Johansen K, Murtaza A, Holmberg K. Infantile diarrhoea and malnutrition associated with Candida in a developing community. Mycoses. 1993;36(1–2):19–24.PubMedGoogle Scholar
  33. 33.
    Khatip R, Riederer KM, Ramanathan J, Baran J Jr. Faecal fungal flora in healthy volunteers and inpatients. Mycoses. 2001;44(1):151–6.CrossRefGoogle Scholar
  34. 34.
    De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE. 2013;8(10):e76993. doi: 10.1371/journal.pone.0076993.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Colombo AL, Padovan ACB, Chaves GM. Current knowledge of Trichosporon spp. and Trichosporonosis. Clin Microbiol Rev. 2011;24(4):682–700.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Kreger-Van Rij NJW, editor. The yeasts: a taxonomic study. 3rd ed. Amsterdam: Elsevier Science Publishers B.V; 1984.Google Scholar
  37. 37.
    Sanata B, Salam OA, Ibrahim S, et al. Digestive fungal flora in asymptomatic subjects in Bobo-Dioulasso, Burkina Faso. Asian Pac J Trop Biomed. 2014;4(8):658–62.CrossRefGoogle Scholar
  38. 38.
    Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN. Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiological cutoff values to characterize resistance in the SENTRY antimicrobial surveillance programme (2009). Diagn Microbiol Infect Dis. 2011;69(1):45–50.CrossRefPubMedGoogle Scholar
  39. 39.
    Carrillo-Munoz AJ, Quindos G, Tur C, et al. In vitro antifungal activity of liposomal nystatin in comparison with nystatin, amphotericin B cholesteryl sulphate, liposomal amphotericin B desoxycholate, fluconazole and itraconazole. J Antimicrob Chemother. 1999;44(3):397–401.CrossRefPubMedGoogle Scholar
  40. 40.
    Richter SS, Galask RP, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J Clin Microbiol. 2005;43(5):2155–62.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Choukri F, Benderdouche M, Sednaoui P. In vitro susceptibility profile of 200 recent isolates of Candida spp. to topical antifungal treatments of vulvovaginal candidiasis, the imidazoles and nystatin agents. J Mycol Med. 2014;24(4):303–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Bennett JF, Izumikawa K, Marr KA. Mechanisms of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob Agents Chemother. 2004;48(5):1773–7.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • A. Serda Kantarcioglu
    • 1
    • 3
    Email author
  • Nuri Kiraz
    • 1
  • Ahmet Aydin
    • 2
  1. 1.Department of Medical MicrobiologyIstanbul UniversityIstanbulTurkey
  2. 2.Department of Pediatrics Metabolic Diseases, Cerrahpasa Medical FacultyIstanbul UniversityIstanbulTurkey
  3. 3.Deep Mycosis Laboratory, Department of Microbiology and Clinical Microbiology, Cerrahpaşa Medical FacultyIstanbul UniversityCerrahpaşa, IstanbulTurkey

Personalised recommendations