Skip to main content
Log in

2-(Benzylideneamino)phenol: A Promising Hydroxyaldimine with Potent Activity Against Dermatophytoses

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Infections caused by dermatophytes, mainly Trichophyton rubrum,are often vulnerable to relapses upon cessation of antifungal therapy, reinforcing the need of new antifungals. Aldimines have potential biological activities, but there are few reports on their antifungal profile. The aim of this study was to evaluate the antifungal activity of 2-(benzylideneamino)phenol (3A3) and 4-(benzylideneamino)phenol (3A4) against dermatophytes. We determined the minimum inhibitory concentration, minimum fungicidal concentration, time-kill curves and fractional inhibitory concentration of the combination of 3A3, 3A4 and itraconazole against a set of isolates of T. rubrum and T. interdigitale. 3A3 was tested in a murine model of dermatophytoses caused by T. rubrum, and the effect on phagocytosis was assessed. The MIC values ranged from 8 to 32 μg/mL for 3A3 and from 64 to 256 μg/mL for 3A4. The interaction between 3A3 and 3A4 with itraconazole proved to be synergistic and indifferent, respectively. 3A3 was as efficient as itraconazole in reducing the fungal burden on the skin of mice, being this effect associated with the influx of neutrophil and macrophage. Also, 3A3 was able to increase the internalization of conidia by macrophages. Altogether, our data encourage future clinical studies with 3A3 to treat dermatophytoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gupta AK, Tu LQ. Dermatophytes: diagnosis and treatment. J Am Acad Dermatol. 2006;54:1050–5.

    Article  PubMed  Google Scholar 

  2. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Gupta AK, Cooper EA. Update in antifungal therapy of dermatophytosis. Mycopathologia. 2008;166:353–67.

    Article  PubMed  Google Scholar 

  4. Santos DA, Araújo RAC, Kholer LM, et al. Molecular typing and antifungal susceptibility of Trichophyton rubrum isolates from patients with onychomycosis pre and post treatment. Int J Antimicrob Agents. 2007;29:563–9.

    Article  CAS  Google Scholar 

  5. Gräser Y, Scott J, Summerbell R. The new species concept in dermatophytes: a polyphasic approach. Mycopathologia. 2008;166:239–56.

    Article  PubMed  Google Scholar 

  6. Shaw JW, Joish VN, Coons SJ. Onychomycosis: health-related quality of life considerations. Pharmacoeconomics. 2002;20:23–6.

    Article  PubMed  Google Scholar 

  7. Degreef H. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia. 2008;166:257–65.

    Article  PubMed  Google Scholar 

  8. Woodfolk JA, Platts-Mills TA. Diversity of the human allergen-specific T cell repertoire associated with distinct skin test reactions: delayed-type hypersensitivity-associated major epitopes induce Th1- and Th2-dominated responses. J Immunol. 2001;167(Suppl 9):5412–9.

    Article  CAS  PubMed  Google Scholar 

  9. Almeida SR. Immunology of dermatophytosis. Mycopathologia. 2008;166:277–83.

    Article  PubMed  Google Scholar 

  10. Baltazar LDM, Soares BM, Carneiro HCS, et al. Photodynamic inhibition of Trichophyton rubrum: in vitro activity and the role of oxidative and nitrosative bursts in fungal death. J Antimicrob Chemother. 2013;68:354–61.

    Article  CAS  Google Scholar 

  11. Martinez-Rossi NM, Peres NTA, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia. 2008;5(Suppl 6):369–83.

    Article  Google Scholar 

  12. Odds FC, Brown AJP, Gow NAR. Antifungal agents: mechanisms of acion. Trends Microbiol. 2003;11(Suppl 6):272–9.

    Article  CAS  PubMed  Google Scholar 

  13. Fernández-Torres B, Inza I, Guarro J. In vitro activities of the new antifungal drug erbeconazole and three other topical agents against 200 strains of dermatophytes. J Clin Microbiol. 2003;41:5209–11.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Fohrer C, Fornecker L, et al. Antifungal combination treatment: a future perspective. Int J Antimicrob Agents. 2006;27:25–30.

    Article  PubMed  Google Scholar 

  15. Da Silva CM, da Silva DL, Modolo LV, et al. Schiff bases: a short review of their antimicrobial activities. J Adv Res. 2011;2:1–8.

    Article  Google Scholar 

  16. Kulkarni A, Patil SA, Badami PS. Synthesis, characterization, DNA cleavage and in vitro antimicrobial studies of La(III), Th(IV) and VO(IV) complexes with Schiff bases of coumarin derivatives. Eur J Med Chem. 2009;44(Suppl 7):2904–12.

    Article  CAS  PubMed  Google Scholar 

  17. Da Silva CM, da Silva DL, Martins CVB, et al. Synthesis of aryl aldimines and their activity against fungi of clinical interest. Chem Biol Drug Des. 2011;78:810–5.

    Article  PubMed  Google Scholar 

  18. Santos DA, Hamdan JS. Evaluation of broth microdilution antifungal susceptibility testing conditions for Trichophyton rubrum. J Clin Microbiol. 2005;43:1917–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Santos DA, Barros MES, Hamdan JS. Establishing a method of inoculum preparation for susceptibility testing of Trichophyton rubrum and Trichophyton mentagrophytes. J Clin Microbiol. 2006;44:98–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi: aproved standard M38-A2. Wayne: CLSI; 2008.

    Google Scholar 

  21. Espinel-Ingroff A. Comparison of in vitro activities pf the new triazole SCH56592 and the echinocandins MK-0991 (L-743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol. 1998;36:2950–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Santos JRA, Gouveia LF, Taylor ELS, et al. Dynamic interaction between fluconazole and amphotericin B against Cryptococcus gattii. Antimicrob Agents Chemother. 2012;56:2553–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fernández Freire P, Labrador V, Pérez Martín JM, Hazen MJ. Cytotoxic effects in mammalian Vero cells exposed to pentachlorophenol. Toxicology. 2005;210(Suppl 1):37–44.

    Article  PubMed  Google Scholar 

  24. Martins CVB, de Resende MA, Magalhães TFF, et al. Antifungal activity of goniothalamin enantiomers. Lett Drug Des Discov. 2008;5:74–8.

    Article  CAS  Google Scholar 

  25. Agência Nacional de Vigilância Sanitária (National Agency for Sanitary Vigilance). Brazilian pharmacopoeia national formulary: second edition. Brazil: ANVISA; 2012.

    Google Scholar 

  26. Baltazar LM, Santos PC, Paula TP, et al. IFN-γ impairs Trichophyton rubrum proliferation in a murine model of dermatophytosis through the production of IL-1β and reactive oxygen species. Med Mycol. 2013;52:1–10.

    Google Scholar 

  27. Lacaz CS, Porto E, Martins JEC. Tratado de micologia médica. São Paulo: Sarvier; 2002.

    Google Scholar 

  28. Matos IM, Souza DG, Seabra DG, et al. Effects of tachykinin NK1 or PAF receptor blockade on the lung injury induced by scorpion venom in rats. Eur J Pharmacol. 1999;376:293–300.

    Article  CAS  PubMed  Google Scholar 

  29. Souza DG, Soares AC, Pinho V, et al. Increased mortality and inflammation in tumor necrosis factor-stimulated gene-14 transgenic mice after ischemia and reperfusion injury. Am J Pathol. 2002;160:1755–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Barcelos LS, Talvani A, Teixeira AS, et al. Impaired inflammatory angiogenesis, but not leukocyte influx, in mice lacking TNFR1. J Leukoc Biol. 2005;78:352–8.

    Article  CAS  PubMed  Google Scholar 

  31. Campos MRM, Russo M, Gomes E, Almeida SR. Stimulation, inhibition and death of macrophages infected with Trichophyton rubrum. Microbes Infect. 2006;8:372–9.

    Article  CAS  PubMed  Google Scholar 

  32. Oda LM, Kubelka CF, Alviano CS, Travassos LR. Ingestion of yeast forms of Sporothrix schenckii by mouse peritoneal macrophages. Infect Immun. 1983;39:497–504.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Olafsson JH, Sigurgeirsson B, Baran R. Combination therapy for onychomycosis. Br J Dermatol. 2003;14(Suppl 65):15–8.

    Article  Google Scholar 

  34. Klepser ME, Ernst EJ, Lewis RE, et al. Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob Agents Chemother. 1998;42(Suppl 5):1207–12.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank to Pharlab (Brazil) for the donation of itraconazole standard powder. This work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG Grant CBB-APQ-00874-11); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Universidade Federal de Minas Gerais (Programa de Auxílio à Pesquisa de Doutores Recém-Contratados); and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grant 471894/2011-7).

Conflict of interest

The authors reported no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Assis Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasparto, A.K., Baltazar, L.M., Gouveia, L.F. et al. 2-(Benzylideneamino)phenol: A Promising Hydroxyaldimine with Potent Activity Against Dermatophytoses. Mycopathologia 179, 243–251 (2015). https://doi.org/10.1007/s11046-014-9850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-014-9850-5

Keywords

Navigation