Skip to main content

Advertisement

Log in

Cutaneous Bacterial Species from Lithobates catesbeianus can Inhibit Pathogenic Dermatophytes

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Antibiotics are being successfully used to fight many infectious diseases caused by pathogenic microorganisms. However, new infectious diseases are continuously being identified, and some known pathogens are becoming resistant against known antibiotics. Furthermore, many antifungals are causing serious side effects in long-term treatments of patients, and many skin infections caused by dermatophytes are difficult to cure. The beneficial roles of resident cutaneous microbiota to inhibit pathogenic microorganisms have been shown for many vertebrate species. Microbial symbionts on the amphibian skin for example can be a source of powerful antimicrobial metabolites that can protect amphibians against diseases, such as chytridiomycosis, caused by a fungal pathogen. In this research, we investigated whether cutaneous bacterial species isolated from Lithobates catesbeianus (North American bullfrog), an invasive amphibian species that is resistant to chytridiomycosis, produce secondary metabolites that can be used to inhibit the growth of three species of dermatophytes (Microsporum gypseum, Epidermophyton floccosum, and Trichophyton mentagrophytes) which are known to cause topical or subdermal skin infections in humans. Strongly anti-dermatophyte bacterial species that belonged to the Bacillaceae, Streptomycetaceae, Pseudomonadaceae, Xanthomonadaceae, Aeromonadaceae, and Enterobacteriaceae were identified. This research has provided evidence of the presence of cutaneous anti-dermatophyte bacteria from L. catesbeianus which might provide a basis for health care providers to experiment with new antifungals in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Georgopapadakou NH, Walsh TJ. Human mycoses: drugs and targets for emerging pathogens. Science. 1994;264:371–3.

    Article  CAS  PubMed  Google Scholar 

  2. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Leyden JJ. Microbial ecology in interdigital “athlete’s foot” infection. Semin Dermatol. 1982;1:149–52.

    Google Scholar 

  4. Richardson MD. Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother. 2005;56:5–11.

    Article  Google Scholar 

  5. Pfaller MA, Pappas PG, Wingard JR. Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis. 2006;43:3–14.

    Article  Google Scholar 

  6. Dismukes WE. Introduction to antifungal drugs. Clin Infect Dis. 2000;30:653–7.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson LB, Kauffman CA. Voriconazole: a new triazole antifungal agent. Clin Infect Dis. 2003;36:630–7.

    Article  CAS  PubMed  Google Scholar 

  8. Enoch DA, Ludlam H, Brown NM. Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol. 2006;55:809–18.

    Article  CAS  PubMed  Google Scholar 

  9. Chang C-H, Yinong Y-X, Kurth T, Orav JE, Chan K. The safety of oral antifungal treatments for superficial dermatophytosis and onychomycosis: a meta-analysis. Am J Med. 2007;120:791–8.

    Article  CAS  PubMed  Google Scholar 

  10. Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2003;2:473–81.

    Article  CAS  PubMed  Google Scholar 

  11. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999;12:501–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Huang DB, Ostrosky-Zeichner L, Wu JJ, Pang KR, Tyring SK. Therapy of common superficial fungal infections. Dermatol Ther. 2004;17:517–22.

    Article  PubMed  Google Scholar 

  13. Rollins-Smith LA, Carey C, Longcore J, Doersam JK, Boutte A, Bruzgal JE, Conlon JM. Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Dev Comp Immunol. 2002;26:471–9.

    Article  CAS  PubMed  Google Scholar 

  14. Rollins-Smith LA, Reinert LK, O’Leary CJ, Houston LE, Woodhams DC. Antimicrobial peptide defense in amphibian skin. Integr Comp Biol. 2005;45:137–42.

    Article  CAS  PubMed  Google Scholar 

  15. Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19:491–511.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ramsey JP, Mercurio A, Holland JA, Harris RN, Minbiole KP. The cutaneous bacterium Janthinobacterium lividum inhibits the growth of Trichophyton rubrum in vitro. Int J Dermatol. 2013. doi: 10.1111/ijd.12217.

  17. Daszak P, Strieby A, Cunningham AA, Longcore JE, Brown CC, Porter D. Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol J. 2004;14:201–7.

    Google Scholar 

  18. Garner TWJ, Perkins MW, Govindarajulu P, Seglie D, Walker S, Cunningham AA, Fisher MC. The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biol Lett. 2006;2:455–9.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ramsey JP, Reinert LK, Harper LK, Woodhams DC, Rollins-Smith LA. Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis. Infect Immun. 2010;78:3981–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gervasi SS, Urbina J, Hua J, Chestnut T, Relyea RA, Blaustein RA. Experimental evidence for American bullfrog (Lithobates catesbeianus) susceptibility to the chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth. 2013;10:166–71.

    Article  PubMed  Google Scholar 

  21. Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: What do they tell us? Biopolymers. 1998;47:435–50.

    Article  CAS  PubMed  Google Scholar 

  22. Goraya J, Knoop FC, Conlon JM. Ranatuerins: antimicrobial peptides isolated form the skin of the American Bullfrog, Rana catesbeiana. Biochem Biophys Res Comm. 1998;250:589–92.

    Article  CAS  PubMed  Google Scholar 

  23. Ardipradja K, Alford RA, Marantelli G, Reinert LK, Rollins-Smith LA. Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim Conserv. 2005;10:409–508.

    Google Scholar 

  24. Els WJ, Henneberg R. Histological features and histochemistry of the mucous glands in ventral skin of the frog (Rana fuscigula). Histol Histophathol. 1990;5:343–8.

    CAS  Google Scholar 

  25. Duellman WE, Trueb L. Biology of amphibians. New York: McGraw-Hill; 1986.

    Google Scholar 

  26. Brizzi R, Delfino G, Pellegrini R. Specialized mucous glands and their possible adaptive role in the males of some species of Rana (Amphibia, Anura). J Morphol. 2002;254:328–41.

    Article  PubMed  Google Scholar 

  27. Austin RM. Cutaneous microbial flora and antibiosis in Plethodon ventralis. In: Bruce RC, Jaeger RG, Houck LD, editors. The biology of plethodontid salamanders. New York: Kluwer Academic/Plenum; 2000. p. 127–36.

    Google Scholar 

  28. Harris RN, James TY, Lauer A, Simon MA, Patel A. The amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacterial flora of amphibian species. EcoHealth. 2006;3:403–5.

    Article  Google Scholar 

  29. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KPC. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 2009;3:818–24.

    Article  CAS  PubMed  Google Scholar 

  30. Lauer A, Simon MA, Banning JL, André E, Duncan K, Harris RN. Common cutaneous bacteria from the eastern red-backed salamander can inhibit pathogenic fungi. Copeia. 2007;3:630–40.

    Article  Google Scholar 

  31. Lauer A, Simon MA, Banning JL, Lam BA, Harris RN. Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J. 2008;2:145–57.

    Article  CAS  PubMed  Google Scholar 

  32. Woodhams DC, Rollins-Smith LA, Alford RA, Simon MA, Harris RN. Innate immune defenses of amphibian skin: antimicrobial peptides and more. Anim Conserv. 2007;10:425–8.

    Article  Google Scholar 

  33. Lam BA, Walke JB, Vredenburg VT, Harris RN. Proportion of individuals with anti-Batrachochytrium dendrobatidis skin bacteria is associated with population persistence in the frog Rana muscosa. Biol Conserv. 2010;143:529–31.

    Article  Google Scholar 

  34. Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R. Emerging infectious diseases and amphibian population declines. Emerg Infect Dis. 1999;5:735–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Chinchar VG, Bryan L, Silphadaung U, Noga E, Wade D, Rollins-Smith L. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology. 2004;323:268–75.

    Article  CAS  PubMed  Google Scholar 

  36. Rölleke S, Muyzer G, Wawer C, Wanner G, Lubitzi W. Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 1996;62:259–65.

    Google Scholar 

  37. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogint ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA. 1985;82:6955–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lane DJ. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. In: Stackebrand E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York: Wiley; 1991. p. 115–75.

    Google Scholar 

  39. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5. Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.

    Google Scholar 

  41. Katz E, Demain AL. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev. 1977;41:449–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol. 1994;60:2023–330.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol. 2005;56:845–57.

    Article  CAS  PubMed  Google Scholar 

  44. Tagg JR, Dierksen KP. Bacterial replacement therapy: adapting ‘germ warfare’ to infection prevention. Trends Biotechnol. 2003;21:217–23.

    Article  CAS  PubMed  Google Scholar 

  45. Pimentel-Elardo S. Novel anti-infective secondary metabolites and biosynthetic gen clusters from Actinomycetes associated with marine sponges. PhD thesis. Julius-Maximilians-University Würzburg, Germany, School of Life Sciences, Section: Infection and Immunity; 2008.

  46. Minkwitz A, Berg G. Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol. 2001;39:139–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Naik PR, Raman G, Narayanan KB, Sakthivel N. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. Microb Ecol. 2008;56:492–504.

    Article  CAS  PubMed  Google Scholar 

  48. Bush K. Metallo-β-Lactamase: a class apart. Clin Infect Dis. 1998;27:48–53.

    Article  Google Scholar 

  49. Vanneste JL, Yu J, Beer SV. Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora. J Bacteriol. 1992;174:2785–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Wright SA, Zumoff CH, Schneider L, Beer SV. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol. 2001;67:284–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rollins-Smith LA, Conlon MJ. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev Comp Immunol. 2005;29:589–98.

    Article  CAS  PubMed  Google Scholar 

  52. Walke J, Becker MH, Loftus SC, House LL, Cormier G, Jensen RV, Belden LK. Amphibian skin may select for rare environmental microbes. ISME J. 2014;8:2207–17.

    Article  CAS  PubMed  Google Scholar 

  53. Culp CE, Falkinham JO III, Belden LK. Identification of the natural bacterial microflora on the skin of eastern newts, bullfrog tadpoles and redback salamanders. Herpetologia. 2007;63:66–71.

    Article  Google Scholar 

  54. Kueneman JG, Wegener Parfrey L, Woodhams DC, Archer HM, Knight R, McKenzie VJ. The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 2013. doi:10.1111/mec.12510.

  55. Staley JT, Konopka A. Measurements of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol. 1985;39:321–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by a ‘Student Research Scholarship’ from California State University Bakersfield which led to the completion of a Master’s Thesis. Thanks also to Professors C. Kloock and P. Smith from California State University Bakersfield for their critical comments and suggestions that helped to improve this manuscript.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Lauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauer, A., Hernandez, T. Cutaneous Bacterial Species from Lithobates catesbeianus can Inhibit Pathogenic Dermatophytes. Mycopathologia 179, 259–268 (2015). https://doi.org/10.1007/s11046-014-9838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-014-9838-1

Keywords

Navigation