Skip to main content
Log in

Induction of Oxidative Stress in Prototheca zopfii by Indole-3-Acetic Acid/HRP or 2,4-Pentanedione/HRP Systems and Their Oxidation Products

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

We investigated the toxic effects on Prototheca zopfii of indole-3-acetic acid (IAA) and 2,4-pentanedione (PD) combined with horseradish peroxidase (HRP) alongside the oxidation products of 3-methyl-2-oxindole (MOI) and indole-3-carbinol (I3C) from the IAA/HRP system and methylglyoxal (MGO) from the PD/HRP system. The microorganism was incubated in the absence (control) or presence of IAA, PD, IAA/HRP, PD/HRP, MOI, I3C and MGO and determined: (1) cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay; (2) growth inhibitory concentration by resazurin assay and (3) antioxidant enzymes activities of: catalase (CAT), glutathione reductase (GR) and superoxide dismutase (SOD). P. zopfii was more susceptible to IAA at 40 mM than PD at the same concentration, which seems to indicate that IAA was more effective at initiating cell death. These data corroborate results from the resazurin assay. Concentrations of 40 mM of IAA, IAA/HRP and PD/HRP, 20 mM of PD/HRP, 10 mM of MOI, 2 mM of I3C and 8 mM of MGO inhibited the growth of P. zopfii. With sub-inhibitory concentrations of IAA and IAA/HRP at 30 mM, MOI at 8 mM and I3C at 1 mM, the activities of CAT and GR increased, whereas no statistical difference was observed for CAT activity with IAA/HRP. Thus, PD at 30 mM and MGO at 6 mM increased the activities of CAT and GR, whereas PD/HRP system at 15 mM decreased CAT activity and PD/HRP and MGO showed no statistical difference for SOD activity. In conclusion, IAA/HRP or PD/HRP systems and their oxidation products exert cytotoxic effects on P. zopffi; however, I3C and MGO appear to exert greater microbicidal effect on P. zopfii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mayorga J, Barba-Gómez JF, Verduzco-Martínez AP, Muñoz-Estrada VF, Welsh O. Protothecosis. Clin Dermatol. 2012;30(4):432–6.

    Article  PubMed  Google Scholar 

  2. Todd JR, King JW, Oberle A, Matsumoto T, Odaka Y, Fowler M, Pore RS, Shahan TA, Yin L, Sanusi ID. Protothecosis: report of a case with 20 year follow-up and review of previously published cases. Med Mycol. 2012;50(7):673–89.

    Article  CAS  PubMed  Google Scholar 

  3. Costa EO, Ribeiro MG, Ribeiro AR, Rocha NS, Nardi G Jr. Diagnosis of clinical bovine mastitis by fine needle aspiration followed by staining and scanning electron microscopy in a Prototheca zopfii outbreak. Mycopathologia. 2004;158(1):81–5.

    Article  PubMed  Google Scholar 

  4. Zaini F, Kanani A, Falahati M, Fateh R, Salimi-Asl M, Saemi N, Farahyar SH, Kargar KA, Nazeri M. Identification of Prototheca zopfii from bovine mastitis. Iran J Public Health. 2012;41(8):84–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Pore RS. 2011, Prototheca Krüger. In: Kurtzman CP, Fell JW, Boekhout T, editors. The yasts, a taxonomic study. Amsterdam, Netherlands: Elsevier; 1984;3(5):2071–80.

  6. Marques S, Silva E, Kraft C, Carvalheira J, Videira A, Huss VAR, Thompson G. Bovine mastitis associated with the Prototheca blaschkeae. J Clin Microbiol. 2008;46(6):1941–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Jagielski T, Buzzini P, Lassa H, Malinowski E, Branda E, Turchetti B, Polleichtner A, Roesler U, Lagneau PE, Marques S, Silva E, Thompson G, Stachowiak R, Bielecki J. Multicentre Etest evaluation of in vitro activity of conventional antifungal drugs against European bovine mastitis Prototheca spp. isolates. J Antimicrob Chemother. 2012;67(8):1945–7.

    Article  CAS  PubMed  Google Scholar 

  8. Roesler U, Scholz H, Hensel A. Emended phenotypic characterization of Prototheca zopfii: a proposal for three biotypes and standards for their identification. Int J Syst Evol Microbiol. 2003;53(4):1195–9.

    Article  CAS  PubMed  Google Scholar 

  9. Osumi T, Kishimoto Y, Kano R, Maruyama H, Onozaki M, Makimura K, Ito T, Matsubara K, Hasegawa A. Prototheca zopfii genotypes isolated from cow barns and bovine mastitis in Japan. Vet Microbiol. 2008;131(3–4):419–23.

    Article  CAS  PubMed  Google Scholar 

  10. Ricchi M, Goretti M, Branda E, Cammi G, Garbarino CA, Turchetti B, Moroni P, Arrigoni N, Buzzini P. Molecular characterization of Prototheca strains isolated from Italian dairy herds. J Dairy Sci. 2008;93(10):4625–31.

    Article  Google Scholar 

  11. Jagielski T, Lassa H, Arhholdt J, Malinowski E, Roesler U. Genotyping of bovine Prototheca mastitis isolates from Poland. Vet Microbiol. 2001;149(1–2):283–7.

    Google Scholar 

  12. Sobukawa H, Yamaguchi S, Kano R, Ito T, Suzuki K, Onozaki M, Hasegawa A, Kamata H. Short communication: molecular typing of Prototheca zopfii from bovine mastitis in Japan. J Dairy Sci. 2012;95(8):4442–6.

    Article  CAS  PubMed  Google Scholar 

  13. Onozaki M, Makimura K, Satoh K, Hasegawa A. Detection and identification of genotypes of Prototheca zopfii in clinical samples by quantitative PCR analysis. Jpn J Infect Dis. 2013;66(5):383–90.

    CAS  PubMed  Google Scholar 

  14. Lassa H, Jagielski T, Malinowski E. Effect of different heat treatments and disinfectants on the survival of Prototheca zopfii. Mycopathologia. 2011;171(3):177–82.

    Article  PubMed  Google Scholar 

  15. Melville PA, Benites NR, Sinhorimi IL, Costa EO. Susceptibility and features of the ultrastructure of Prototheca zopfii following exposure to copper sulphate, silver nitrate and chlorexidine. Mycophatologia. 2002;156(1):1–7.

    Article  CAS  Google Scholar 

  16. Lopes MM, Ribeiro R, Carvalho D, Freitas G. In vitro antimicrobial susceptibility of Prototheca spp. isolated from bovine mastitis in a Portugal dairy herd. J Mycol Med. 2008;18(4):205–920.

    Article  Google Scholar 

  17. Krukowski H, Lisowski A, Nowakowicz-Dębek B, Wlazlo L. Susceptibility of Prototheca zopfii strains isolated from cows with mastitis to chlorhexidine and iodine. Turk J Vet Anim Sci. 2013;37(1):106–8.

    CAS  Google Scholar 

  18. Buzzini P, Turchetti B, Branda E, Goretti M, Amici M, Lagneau PE, Scaccabarozzi L, Bronzo V, Moroni P. Large-scale screening of the in vitro susceptibility of Prototheca zopfii towards polyene antibiotics. Med Mycol. 2008;46(5):511–4.

    Article  CAS  PubMed  Google Scholar 

  19. Lee J-H, Cho MH, Lee J. 3-Indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ Microbiol. 2011;13(1):62–73.

    Article  CAS  PubMed  Google Scholar 

  20. Kim DS, Jeon SE, Jeong YM, Kim SY, Kwon SB, Park KC. Hydrogen peroxide is a mediator of indole-3-acetic acid/horseradish peroxidase-induced apoptosis. FEBS Lett. 2006;580(5):1439–46.

    Article  CAS  PubMed  Google Scholar 

  21. Greco O, Folkes LK, Wardman P, Tozer GM, Dachs GU. Development of a novel enzyme/prodrug combination for gene therapy of cancer: horseradish peroxidase/indole-3-acetic acid. Cancer Gene Ther. 2000;7(11):1414–20.

    Article  CAS  PubMed  Google Scholar 

  22. Park KC, Kim SY, Kim DS. Experimental photodynamic therapy for liver cancer cell-implanted nude mice by an indole-3-acetic acid and intense pulsed light combination. Biol Pharm Bull. 2009;32(9):1609–13.

    Article  CAS  PubMed  Google Scholar 

  23. Kim SY, Ryu JS, Li H, Park WJ, Yun HY, Baek KJ, Kwon NS, Sohn UD, Kim DS. UVB-activated indole-3-acetic acid induces apoptosis of PC-3 prostate cancer cells. Anticancer Res. 2010;30(11):4607–12.

    CAS  PubMed  Google Scholar 

  24. Folkes LK, Wardman P. Oxidative activation of indole-3- acetic acids to cytotoxic species—a potential new role for plant auxins in cancer therapy. Biochem Pharmacol. 2001;61(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  25. Cunha LT, Pugine SMP, Silva MRM, Costa EJX, De Melo MP. Microbicidal action of indole-3-acetic acid combined with horseradish peroxidase on Prototheca zopfii from bovine mastitis. Mycopathologia. 2010;169(2):99–105.

    Article  CAS  PubMed  Google Scholar 

  26. Rodrigues AP, Fonseca LM, Oliveira OMMF, Brunetti IL, Ximenes VF. Oxidation of acetylacetone catalysed by horseradish peroxidase in the absence of hydrogen peroxide. Biochim Biophys Acta. 2006;1760(12):1755–61.

    Article  CAS  PubMed  Google Scholar 

  27. Varadarajan A, Utekar SS, Malve SP. Synthesis, structural characterization and antimicrobial studies of 2,4-pentanedione derivatives. Acta Pol Pharm. 1998;55(2):137–41.

    CAS  PubMed  Google Scholar 

  28. Sena CM, Matafome P, Crisóstomo J, Rodrigues L, Fernandes R, Pereira P, Seiça RM. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res. 2012;65(5):497–506.

    Article  CAS  PubMed  Google Scholar 

  29. Matafome P, Santos-Silva D, Crisóstomo J, Rodrigues T, Rodrigues L, Sena CM, Pereira P, Seiça R. Methylglyoxal causes structural and functional alterations in adipose tissue independently of obesity. Arch Physiol Biochem. 2012;118(2):58–68.

    Article  CAS  PubMed  Google Scholar 

  30. Semchyshyn HM. Reactive carbonyl species in vivo: generation and dual biological effects. Sci World J. 2014;1–10.

  31. Verma A, Prasad KN, Singh AK, Nyati KK, Gupta RK, Paliwal VK. Evaluation of the MTT lymphocyte proliferation assay for the diagnosis of neurocysticercosis. J Microbiol Methods. 2010;81(2):175–8.

    Article  CAS  PubMed  Google Scholar 

  32. Pereira DH, Kitagawa RR, Raddi MSG, Fonseca LM, Ximenes VF. The triad indole-3-acetic acid ethyl ester/esterase/horseradish peroxidase as a new cytotoxic prodrug/enzyme combination. Appl Cancer Res. 2010;30(1):204–9.

    Google Scholar 

  33. Fotakis G, Timbrell JA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett. 2006;160(2):171–7.

    Article  CAS  PubMed  Google Scholar 

  34. Alejo CJB, Fasciani C, Grenier M, Netto-Ferreira JC, Scaiano JC. Reduction of resazurin to resorufin catalyzed by gold nanoparticles: dramatic reaction acceleration by laser or LED plasmon excitation. Catal Sci Technol. 2011;1(8):1506–11.

    Article  CAS  Google Scholar 

  35. Hudman DA, Sargentini NJ. Resazurin-based assay for screening bacteria for radiation sensitivity. Springerplus. 2013;2(1):55.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Pugine SMP, Brito P, Alba-Loureiro TC, Costa EJX, Curi R, De Melo MP. Effect of indole-3-acetic acid administration by gavage and by subcutaneous injection on rat leukocytes. Cell Biochem Funct. 2007;25(6):723–30.

    Article  CAS  PubMed  Google Scholar 

  37. Folkes LK, Wardman P. Oxidative activation of indole-3-acetic acids to cytotoxic species—a potential new role for plant auxins in cancer therapy. Biochem Pharmacol. 2001;61(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  38. Kim DS, Kim SY, Jeong YM, Jeon SE, Kim MK, Kwon SB, Park KC. Indole-3-acetic acid/horseradish peroxidase-induced apoptosis involves cell surface CD95 (Fas/APO-1) expression. Biol Pharm Bull. 2006;29(8):1625–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported by Grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. De Melo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, L.T., Pugine, S.M.P., Lins, P.G. et al. Induction of Oxidative Stress in Prototheca zopfii by Indole-3-Acetic Acid/HRP or 2,4-Pentanedione/HRP Systems and Their Oxidation Products. Mycopathologia 179, 73–79 (2015). https://doi.org/10.1007/s11046-014-9807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-014-9807-8

Keywords

Navigation