Skip to main content

Advertisement

Log in

Phylogenetic Analyses on the Diversity of Aspergillus fumigatus Sensu Lato Based on Five Orthologous Loci

  • Published:
Mycopathologia Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2014

Abstract

One hundred isolates of Aspergillus fumigatus sensu lato mainly from China, as well as from Australia, France, India, Indonesia, Ireland, UK, and USA were analyzed to infer their sequence types (STs) and population diversity based on partial calmodulin, calcineurin regulatory subunit B, beta-tubulin, cytochrome C and calcineurin catalytic subunit A genes as well as their mating types, using ClonalFrame, Structure and MEGA software. Our results inferred 48 STs and showed that most of the STs or lineages evolved independently and without clear population structure among them. Whereas one lineage was recognized that could be a true population and in which one clade might diverge into another distinct lineage, namely, a cryptic species, A. neoellipticus. In addition, we found that mutation, parasexual, and sexual recombination could, respectively, play specific roles in the evolution of these fungi. Our results also showed that MAT1-1/MAT1-2 mating type ratios of A. fumigatus sensu lato was biased to nearly 1:1.4 (20/28) when clone-corrected, but when not clone-corrected, the ratio of MAT1-1/MAT1-2 was so biased as near 1:2 (35/65), which might mean that isolates with MAT1-2 are in the process of losing sexual ability preceding those with MAT1-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Raper KB, Fennell DI. The genus Aspergillus. Baltimore: Williams & Wilkins; 1965.

    Google Scholar 

  2. Kozakiewicz Z. Aspergillus species on stored products. Mycol Pap. 1989;161:1–188.

    Google Scholar 

  3. Kwon-Chung KJ. A new pathogenic species of Aspergillus in the Aspergillus fumigatus series. Mycologia. 1975;67:770–9.

    Article  PubMed  CAS  Google Scholar 

  4. Pitt JI, Samson RA, Frisvad JC. List of accepted species and their synonyms in the family Trichocomaceae. In: Samson RA, Pitt JI, editors. Integration of modern taxonomic methods for Penicillium and Aspergillus classicfication. Amsterdam: Harwood Academic Publishers; 2000. p. 9–48.

    Google Scholar 

  5. Hong S-B, Go S-J, Shin H-D, Frisvad JC, Samson RA. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia. 2005;97:1316–29.

    Article  PubMed  CAS  Google Scholar 

  6. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya. Stud Mycol. 2007;59:147–203.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Peterson SW. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia. 2008;100:205–26.

    Article  PubMed  CAS  Google Scholar 

  8. Debeaupuis J-P, Sarfati J, Chazalet V, Latgé J-P. Genetic diversity among clinical and environmental isolates of Aspergillus fumigatus. J Clin Microbiol. 1997;65:3080–5.

    CAS  Google Scholar 

  9. Pringle A, Baker DM, Platt JL, Wares JP, Latge JP, Taylor JW. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution. 2005;59:1886–99.

    Article  PubMed  CAS  Google Scholar 

  10. de valk HA, Meis JF, Curfs IM, Muehlethaler K, Mouton JW, Klaassen CH. Use of a novel panel of nine short tandem repeats for exact and high-resolution fingerprinting of Aspergillus fumigatus isolates. J Clin Microbiol. 2005;43:4112–20.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Klaassen CH, Gibbons JG, Fedorova ND, Meis JF, Rokas A. Evidence for genetic differentiation and variable recombination rates among Dutch populations of the opportunistic human pathogen Aspergillus fumigatus. Mol Ecol. 2012;21:57–70.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klaassen CHW. MLST versus microsatellites for typing Aspergillus fumigatus isolates. Med Mycol. 2009;47S1:S27–33.

    Article  Google Scholar 

  13. Radford SA, Johnson EM, Leeming JP, Millar MR, Cornish JM, Foot ABM, Warnock DW. Molecular epidemiological study of Aspergillus fumigatus in a bone marrow transplantation unit by PCR amplification of ribosomal intergenic spacer sequences. J Clin Microbiol. 1998;36:1294–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Bain JM, Tavanti A, Davidson AD, Jacobsen MD, Shaw D, Gow NAR, Odds FC. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus. J Clin Microbiol. 2007;45:1469–77.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Balajee AS, Tay ST, Lasker BA, Hust SF, Rooney AP. Characterization of a novel gene for strain typing reveals substructuring of Aspergillus fumigatus across North America. Eukaryot Cell. 2007;6:1392–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Varga J, Toth B. Genetic variability and reproductive mode of Aspergillus fumigatus. Infect Genet Evol. 2003;3:3–17.

    Article  PubMed  CAS  Google Scholar 

  17. Paoletti M, Rydholm C, Schwier EU, Anderson MJ, Szakacs G, Lutzoni F, Debeaupuis J-P, Latge J-P, Denning DW, Dyer PS. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol. 2005;15:1242–8.

    Article  PubMed  CAS  Google Scholar 

  18. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, García JL, García MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jiménez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Latgé JP, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O’Neil S, Paulsen I, Peñalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez de Córdoba S, Rodríguez-Peña JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sánchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de Aldana CR, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005;438:1151–6.

    Article  PubMed  CAS  Google Scholar 

  19. O’Gorman CM, Fuller HT, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature. 2009;457:471–4.

    Article  PubMed  Google Scholar 

  20. Rydholm C, Szakacs G, Lutzoni F. Low genetic variation and no detectable population structure in Aspergillus fumigatus compared to closely related Neosrtorya species. Eukaryot Cell. 2006;5:650–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Verweij PE, Mellado E, Melchers WJ. Multiple-triazole-resistant aspergillosis. N Engl J Med. 2007;356:335–47.

    Article  Google Scholar 

  22. Snelders E, van der Lee HAL, Kuijpers J, Rijs AJMM, Varga J, Samson RA, Mellado E, Donders ART, Melchers WJG, Verweij PE. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance nechanism. PloS Med. 2008;5:e219.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Snelders E, Karawajczyk A, Schaftenar G, Verweij PE, Melchers WJ. Azole resistance profile of amino acid changes in Aspergillus fumgatus CYP51A based on protein homology modelling. Antimicrob Agents Chemother. 2010;54:2425–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Vermeulen E, Maertens J, Schoemans H, Lagrou K. Azole-resistant Aspergillus fumigatus due to TR46/Y121F/T289A mutation emerging in Belgium. Euro Surveill. 2012;17:1–3.

    Google Scholar 

  25. Chowdhary A, Sharma C, Kathuria S, Hagen F, Meis JF. Azole-resistant Aspergillus fumigatus with the environmental TR46/Y121F/T289A mutation in India. J Antimicrob Chemother. 2014;69:555–7.

    Article  PubMed  CAS  Google Scholar 

  26. Arendrup MC, Mavridou E, Mortensen KL, Snelders E, Frimodt-Møller N, Khan H, Melchers WJ, Verweij PE. Development of azole resistance in Aspergillus fumigatus during zaole therapy associated with change in virulence. PLoS ONE. 2010;5:e10080.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Steinbach WJ, Cramer RA, Perfect BZ, Asfaw YG, Sauer TC, Najvar LK, Kirkpatrick WR, Patterson TF, Benjamin DK, Heitman J, Perfect JR. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot Cell. 2006;5:1091–103.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. da Silva FME, Heinekamp T, Hartl A, Brakhage AA, Semighini CP, Harris SD, Savoldi M, de Gouvea PF, de Souza Goldman MH, Goldman GH. Functional characterization of the Aspergillus fumigatus calcineurin. Fung Gen Biol. 2007;44:219–30.

    Article  Google Scholar 

  29. Chen Y-L, Brand A, Morrison EL, Silao FGS, Bigol UG, Malbas FF, Nett JE, Andes DR, Solis NV, Filler SG, Averette A, Heitman J. Calcineurin controls drug tolerance, hyphal growth, and virulence in Candia dubliniensis. Eukaryot Cell. 2011;10:803–19.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Chen Y-L, Kozubowski L, Cardenas ME, Heitman J. On the roles of calcineurin in fungal growth and pathogenesis. Curr Fungal Infect Rep. 2010;4:244–55.

    Article  Google Scholar 

  31. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Pappas PG, Maertens J, Lortholary O, Kauffman CA, Denning DW, Patterson TF, Maschmeyer G, Bille J, Dismukes WE, Herbrecht R, Hope WW, Kibbler CC, Kullberg BJ, Marr KA, Muñoz P, Odds FC, Perfect JR, Restrepo A, Ruhnke M, Segal BH, Sobel JD, Sorrell TC, Viscoli C, Wingard JR, Zaoutis T, Bennett JE. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46:1813–21.

    Article  PubMed  PubMed Central  Google Scholar 

  32. He H, Ding L, Sun B, Li F, Zhan Q. Role of galactomannan determinations in bronchoalveolar lavage fluid samples from critically ill patients with chronic obstructive pulmonary disease for the diagnosis of invasive pulmonary aspergillosis: a prospective study. Crit Care. 2012;16:R138.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Malloch D. Moulds their isolation, cultivation and identification. Toronto: University of Toronto Press; 1981.

    Google Scholar 

  34. Scott J, Malloch D, Wong B, Sawa T, Straus N. DNA heteroduplex fingerprinting in Penicillium. In: Samson RA, Pitt JI, editors. Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Amsterdam: Harwood Academic Publishers; 2000. p. 225–36.

    Google Scholar 

  35. Wang L. Four new records of Aspergillus section Usti from Shandong Province, China. Mycotaxon. 2012;120:373–84.

    Article  Google Scholar 

  36. Wang B, Wang L. Penicillium kongii, a new terverticillate species isolated from plant leaves in China. Mycologia. 2013;105:1547–54.

    Article  PubMed  CAS  Google Scholar 

  37. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. App Environ Microbiol. 1995;61:1323–30.

    CAS  Google Scholar 

  38. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.

    CAS  Google Scholar 

  39. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;8:2731–9.

    Article  Google Scholar 

  40. Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol. 2013;30:1229–35.

    Article  PubMed  CAS  Google Scholar 

  41. Didelot X, Falush D. Inference of bacterial microevolution using multilocus sequence data. Genetics. 2007;175:1251–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7:457–511.

    Article  Google Scholar 

  45. Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Cons Genet Res. 2012;4:359–61.

    Article  Google Scholar 

  46. Rosenberg N, Hirsh AE. On the use of star-shaped genealogies in inference of coalescence times. Genetics. 2003;164:1677–82.

    PubMed  PubMed Central  Google Scholar 

  47. Balajee SA, Nickle D, Varga J, Marr KA. Molecular studies reveal frequent misidentification of Aspergillus fumgatus by morphotyping. Eukaryot Cell. 2006;5:1705–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Warris A, Klaassen CH, Meis JF, De Ruiter MT, De Valk HA, Abrahamsen TG, Gaustad P, Verweij PE. Molecular epidemiology of Aspergillus fumigatus isolates recovered from water, air, and patients show two clusters of genetically distinct strains. J Clin Microbiol. 2003;41:4101–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Schlotterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 1992;20:211–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Estoup A, Jame P, Cornuet JM. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol. 2002;11:1591–604.

    Article  PubMed  CAS  Google Scholar 

  51. Alvarez-Perez S, Garci ME, Bouza E, Pelaez T, Blanco JL. Characterization of multiple isolates of Aspergillus fumgatus from patients: genotype, mating type and invasiveness. Med Mycol. 2009;47:601–8.

    Article  PubMed  CAS  Google Scholar 

  52. Didelot X, Bowden R, Street T, Golubchik T, Spencer C, McVean G, Sangal V, Anjum MF, Achtman M, Falush D, Donnelly P. Recombination and population structure in Salmonella enterica. PLoS Genet. 2011;7:e1002191.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Alvarez-Perez S, Blanco JL, Alba P, Garcia ME. Mating type and invasiveness are significantly associated in Aspergillus fumgatus. Med Mycol. 2010;48:273–7.

    Article  PubMed  CAS  Google Scholar 

  54. Cheema MS, Christians JK. Virulence in an insect model differs between mating types in Aspergillus fumigatus. Med Mycol. 2011;49:202–7.

    Article  PubMed  Google Scholar 

  55. Sugui JA, Losada L, Wang W, Varga J, Ngamskulrungroj P, Abu-Asab M, Chang YC, O’Gorman CM, Wickes BL, Nierman WC, Dyer PS, Kwon-Chung KJ. Identification and characterization of an Aspergillus fumigatus “supermater” pair. mBio. 2011;2:e00234–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Schoustra SE, Debets AJM, Slakhorst M, Hoekstra RF. Mitotic recombination accelerates adaptation in the fungus Aspergillus nidulans. PLoS Genet. 2007;3:e68.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sun S, Heitman J. Is sex necessary? BMC Biol. 2011;9:56.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cowen LE. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol. 2008;6:187–98.

    Article  PubMed  CAS  Google Scholar 

  59. Astvad KM, Jensen RH, Hassan TM, Mathiasen EG, Thomsen GM, Pedersen UG, Christensen M, Hilberg O, Arendrup MC. First detection of TR46/Y121F/T289A and of TR34/L98H in azole naïve patients in Denmark despite negative findings in the environment. Antimicrob Agents Chemother. 2014;. doi:10.1128/AAC.02855-14.

    PubMed  Google Scholar 

  60. Cowen LE, Lindquist S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science. 2005;309:185–2189.

    Article  Google Scholar 

Download references

Acknowledgments

Qi-Ming Wang offered help in analyzing the data. Yun Yu and Lei Zhang did a portion of molecular work. This work is supported by National Natural Science Foundation of China (NSFC No. 31270539).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Wang or Bin Cao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Wang, B., Wang, L. et al. Phylogenetic Analyses on the Diversity of Aspergillus fumigatus Sensu Lato Based on Five Orthologous Loci. Mycopathologia 178, 163–176 (2014). https://doi.org/10.1007/s11046-014-9790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-014-9790-0

Keywords

Navigation