Mycopathologia

, Volume 177, Issue 5–6, pp 223–240

Candidiasis: Predisposing Factors, Prevention, Diagnosis and Alternative Treatment

  • Natália Martins
  • Isabel C. F. R. Ferreira
  • Lillian Barros
  • Sónia Silva
  • Mariana Henriques
Article

Abstract

Candidiasis is the most common opportunistic yeast infection. Candida species and other microorganisms are involved in this complicated fungal infection, but Candida albicans continues to be the most prevalent. In the past two decades, it has been observed an abnormal overgrowth in the gastrointestinal, urinary and respiratory tracts, not only in immunocompromised patients, but also related to nosocomial infections and even in healthy individuals. There is a widely variety of causal factors that contribute to yeast infection which means that candidiasis is a good example of a multifactorial syndrome. Due to rapid increase in the incidence in these infections, this is the subject of numerous studies. Recently, the focus of attention is the treatment and, above all, the prevention of those complications. The diagnosis of candidiasis could become quite complicated. Prevention is the most effective “treatment,” much more than eradication of the yeast with antifungal agents. There are several aspects to consider in the daily routine that can provide a strength protection. However, a therapeutic approach is necessary when the infection is established, and therefore, other alternatives should be explored. This review provides an overview on predisposition factors, prevention and diagnosis of candidiasis, highlighting alternative approaches for candidiasis treatment.

Keywords

Candidiasis Predisposing factors Diagnosis Prevention Alternative treatment Therapeutic approach 

References

  1. 1.
    Vázquez-González D, Perusquía-Ortiz AM, Hundeiker M, Bonifaz A. Opportunistic yeast infections: candidiasis, cryptococcosis, trichosporonosis and geotrichosis. J Ger Soc Dermatol. 2013;11:381–94. http://www.ncbi.nlm.nih.gov/pubmed/23621330.
  2. 2.
    McCullough MJ, Ross BC, Reade PC. Candida albicans: a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int J Oral Maxillofac Surg. 1996;25:136–44. http://www.ncbi.nlm.nih.gov/pubmed/8727588.
  3. 3.
    Brunke S, Hube B. Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell Microbiol. 2013;15:701–8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3654559&tool=pmcentrez&rendertype=abstract.
  4. 4.
    Wächtler B, Citiulo F, Jablonowski N, Förster S, Dalle F, Schaller M, et al. Candida albicans–epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One. 2012;7:1–10. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3351431&tool=pmcentrez&rendertype=abstract.
  5. 5.
    Greenberg MS, Glick M. Burket’s oral medicine: diagnosis and treatment. 10th ed. USA: BC Decker Inc.; 2003. p. 658.Google Scholar
  6. 6.
    Eggimann P, Garbino J, Pittet D. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect. Dis. 2003;3:685–702.PubMedCrossRefGoogle Scholar
  7. 7.
    Abi-Said D, Anaissie E, Uzun O, Raad I, Pinzcowski H, Vartivarian S. The epidemiology of hematogenous candidiasis caused by different Candida species. Clin Infect Dis. 1997;24:1122–8. http://www.ncbi.nlm.nih.gov/pubmed/9195068.
  8. 8.
    Raman SB, Nguyen MH, Cheng S, Badrane H, Iczkowski KA, Wegener M, et al. A competitive infection model of hematogenously disseminated candidiasis in mice redefines the role of Candida albicans IRS4 in pathogenesis. Infect Immun. 2013;81:1430–8. http://www.ncbi.nlm.nih.gov/pubmed/23429534.
  9. 9.
    Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4:119–28. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3654610&tool=pmcentrez&rendertype=abstract.
  10. 10.
    Tsai P-W, Chen Y-T, Hsu P-C, Lan C-Y. Study of Candida albicans and its interactions with the host: a mini review. BioMedicine. Elsevier Taiwan LLC; 2013;3:51–64. http://linkinghub.elsevier.com/retrieve/pii/S2211802012000824.
  11. 11.
    Li SY, Yang YL, Chen KW, Cheng HH, Chiou CS, Wang TH, et al. Molecular epidemiology of long-term colonization of Candida albicans strains from HIV-infected patients. Epidemiol Infect. 2006;134:265–9. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2870383&tool=pmcentrez&rendertype=abstract.
  12. 12.
    Fanello S, Bouchara JP, Jousset N, Delbos V, LeFlohic AM. Nosocomial Candida albicans acquisition in a geriatric unit: epidemiology and evidence for person-to-person transmission. J Hosp Infect. 2001;47:46–52. http://www.ncbi.nlm.nih.gov/pubmed/11161898.
  13. 13.
    Kim J, Sudbery P. Candida albicans, a major human fungal pathogen. J Microbiol. 2011;49:171–7. http://www.ncbi.nlm.nih.gov/pubmed/21538235.
  14. 14.
    Department of Surgical Education-Orlando Regional Medical Center. Management of Candida infections in surgical patients. Orlando–Florida, USA. 2002. p. 1–10.Google Scholar
  15. 15.
    Silva S, Henriques M, Hayes A, Oliveira R, Azeredo J, Williams DW. Candida glabrata and Candida albicans co-infection of an in vitro oral epithelium. J Oral Pathol Med. 2011;40:421–7. http://www.ncbi.nlm.nih.gov/pubmed/21158929.
  16. 16.
    McCullough MJ, Clemons KV, Stevens DA. Molecular epidemiology of the global and temporal diversity of Candida albicans. Clin Infect Dis. 1999;29:1220–5. http://www.ncbi.nlm.nih.gov/pubmed/10524966.
  17. 17.
    Develoux M, Bretagne S. Candidoses et levuroses diverses. EMC Mal Infect. 2005;2:119–39. http://linkinghub.elsevier.com/retrieve/pii/S1638623X05000053.
  18. 18.
    Lott TJ, Fundyga RE, Kuykendall RJ, Arnold J. The human commensal yeast, Candida albicans, has an ancient origin. Fungal Genet Biol. 2005;42:444–51. http://www.ncbi.nlm.nih.gov/pubmed/15809008.
  19. 19.
    Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 2010;6:1–13. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2847914&tool=pmcentrez&rendertype=abstract.
  20. 20.
    Silva S, Henriques M, Oliveira R, Williams D, Azeredo J. In vitro biofilm activity of non-Candida albicans Candida species. Curr Microbiol. 2010;61:534–40. http://www.ncbi.nlm.nih.gov/pubmed/20401483.
  21. 21.
    Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62:10–24. http://www.ncbi.nlm.nih.gov/pubmed/23180477.
  22. 22.
    Ferreira AV, Prado CG, Carvalho RR, Dias KST, Dias ALT. Candida albicans and non-C. albicans Candida species: comparison of biofilm production and metabolic activity in biofilms, and putative virulence properties of isolates from hospital environments and infections. Mycopathologia. 2013;175:265–72. http://www.ncbi.nlm.nih.gov/pubmed/23532754.
  23. 23.
    González ID-C, González FG-B, Cuesta TS, Fernández JM, Rodríguez JMD-A, Ferrairo RAE, et al. Patient preferences and treatment safety for uncomplicated vulvovaginal candidiasis in primary health care. BMC Public Health. BioMed Central Ltd; 2011;11:1–8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3048533&tool=pmcentrez&rendertype=abstract.
  24. 24.
    Sanglard D, Odds FC. Reviews resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect. Dis. 2002;2:73–85.PubMedCrossRefGoogle Scholar
  25. 25.
    Kanafani ZA, Perfect JR. Resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis Antimicrob Resist. 2008;46:120–8. http://www.ncbi.nlm.nih.gov/pubmed/18171227.
  26. 26.
    Alves-Silva JM, dos Santos SMD, Pintado ME, Pérez-Álvarez JA, Fernández-López J, Viuda-Martos M. Chemical composition and in vitro antimicrobial, antifungal and antioxidant properties of essential oils obtained from some herbs widely used in Portugal. Food Control. Elsevier Ltd; 2013;32:371–8. http://linkinghub.elsevier.com/retrieve/pii/S0956713513000030.
  27. 27.
    Silva F, Ferreira S, Duarte A, Mendonça DI, Domingues FC. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine. 2011;19:42–7. http://www.ncbi.nlm.nih.gov/pubmed/21788125.
  28. 28.
    Rana IS, Rana AS, Rajak RC. Evaluation of antifungal activity in essential oil of the Syzygium aromaticum (L.) by extraction, purification and analysis of its main component eugenol. Braz J Microbiol. 2011;42:1269–77.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Agarwal V, Lal P, Pruthi V. Effect of plant oils on Candida albicans. J Microbiol Immunol Infect. Taiwan Society of Microbiology; 2010;43:447–51. http://www.ncbi.nlm.nih.gov/pubmed/21075713.
  30. 30.
    Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res. 2008;22:709–24.Google Scholar
  31. 31.
    Shojaii A, Abdollahi Fard M. Review of pharmacological properties and chemical constituents of Pimpinella anisum. Int Sch Res Netw ISRN Pharm. 2012;1–8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3405664&tool=pmcentrez&rendertype=abstract.
  32. 32.
    Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils—a review. Food Chem Toxicol. 2008;46:446–75. http://www.ncbi.nlm.nih.gov/pubmed/17996351.
  33. 33.
    Singh A, Duggal S, Kaur N, Singh J. Berberine: alkaloid with wide spectrum of pharmacological activities. J Nat Prod. 2010;3:64–75.Google Scholar
  34. 34.
    Asgarpanah J, Kazemivash N. Phytochemistry, pharmacology and medicinal properties of Coriandrum sativum L. Afr J Pharm Pharmacol. 2012;6:2340–5. http://www.academicjournals.org/AJPP/abstracts/abstracts/abstract2012/22Aug/AsgarpanahandKazemivash.htm.
  35. 35.
    Sher A. Antimicrobial activity of natural products from medicinal plants. Gomal J Med Sci. 2009;7:72–8.Google Scholar
  36. 36.
    Lewis LE, Bain JM, Lowes C, Gow NAR, Erwig L-P. Candida albicans infection inhibits macrophage cell division and proliferation. Fungal Genet Biol. Elsevier Inc.; 2012;49:679–80. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3430961&tool=pmcentrez&rendertype=abstract.
  37. 37.
    Kwamin F, Nartey NO, Codjoe FS, Newman MJ. Distribution of Candida species among HIV-positive patients with oropharyngeal candidiasis in Accra, Ghana. J Infect Dev Ctries. 2013;7:041–5.CrossRefGoogle Scholar
  38. 38.
    Westwater C, Schofield DA, Nicholas PJ, Paulling EE, Balish E. Candida glabrata and Candida albicans; dissimilar tissue tropism and infectivity in a gnotobiotic model of mucosal candidiasis. FEMS Immunol Med Microbiol. 2007;51:134–9. http://www.ncbi.nlm.nih.gov/pubmed/17854475.
  39. 39.
    Sullivan DJ, Moran GP, Pinjon E, Almosaid A, Stokes C, Vaughan C, et al. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Res. 2004;4:369–76. http://linkinghub.elsevier.com/retrieve/pii/S156713560300240X.
  40. 40.
    Epstein JB, Polsky B. Oropharyngeal candidiasis: a review of its clinical spectrum and current therapies. Clin Ther. 1998;20:40–57. http://www.ncbi.nlm.nih.gov/pubmed/9522103.
  41. 41.
    Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001;9:327–35. http://www.ncbi.nlm.nih.gov/pubmed/11435107.
  42. 42.
    Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369:1961–71. http://www.ncbi.nlm.nih.gov/pubmed/17560449.
  43. 43.
    Rad MM, Zafarghandi S, Abbasabadi B, Tavallaee M. The epidemiology of Candida species associated with vulvovaginal candidiasis in an Iranian patient population. Eur J Obstet Gynecol Reprod Biol. Elsevier Ireland Ltd; 2011;155:199–203. http://www.ncbi.nlm.nih.gov/pubmed/21194828.
  44. 44.
    Tarry W, Fisher M, Shen S, Mawhinney M. Candida albicans: the estrogen target for vaginal colonization. J Surg Res. 2005;129:278–82. http://www.ncbi.nlm.nih.gov/pubmed/16111702.
  45. 45.
    Geiger AM, Foxman B, Sobel JD. Chronic vulvovaginal candidiasis: characteristics of women with Candida albicans, C. glabrata and no Candida. Genitourin Med. 1995;71:304–7. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1195546&tool=pmcentrez&rendertype=abstract.
  46. 46.
    Ahmad A, Khan AU. Prevalence of Candida species and potential risk factors for vulvovaginal candidiasis in Aligarh, India. Eur J Obstet Gynecol Reprod Biol. 2009;144:68–71. http://www.ncbi.nlm.nih.gov/pubmed/19261369.
  47. 47.
    Liu XP, Fan SR, Bai FY, Li J, Liao QP. Antifungal susceptibility and genotypes of Candida albicans strains from patients with vulvovaginal candidiasis. Mycoses. 2009;52:24–8. http://www.ncbi.nlm.nih.gov/pubmed/18498300.
  48. 48.
    David LM, Walzman M, Rajamanoharan S. Genital colonisation and infection with candida in heterosexual and homosexual males. Genitourin Med. 1997;73:394–6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1195901&tool=pmcentrez&rendertype=abstract.
  49. 49.
    Longe JL. Yeast infection. The Gale encyclopedia of alternative medicine, vol 4. 2nd ed. Blanchfield DS, Fundukian L, Watts E, editors. USA: Thomson GALE; 2005.Google Scholar
  50. 50.
    McGirt LY, Martins CR. Dermatologic diagnoses in the perianal area. Clin Colon Rectal Surg. 2004;17:241–5. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2780053&tool=pmcentrez&rendertype=abstract.
  51. 51.
    de Wet PM, Rode H, Van Dyk A, Millar AJW. Candidiasis perianal-estudio comparativo de mupirocina y nistatina. Int J Dermatol. 1999;38:618–22.PubMedCrossRefGoogle Scholar
  52. 52.
    Mårdh P-A, Novikova N, Stukalova E. Colonisation of extragenital sites by Candida in women with recurrent vulvovaginal candidosis. BJOG. 2003;110:934–7. http://www.ncbi.nlm.nih.gov/pubmed/14550364.
  53. 53.
    Okada M, Hisajima T, Ishibashi H, Miyasaka T, Abe S, Satoh T. Pathological analysis of the Candida albicans-infected tongue tissues of a murine oral candidiasis model in the early infection stage. Arch Oral Biol. Elsevier Ltd; 2013;58:444–50. http://www.ncbi.nlm.nih.gov/pubmed/23092606.
  54. 54.
    Dronda F, Alonso-Sanz M, Laguna F, Chaves F, Martínez-Suárez JV, Rodríguez-Tudela JL, et al. Mixed oropharyngeal candidiasis due to Candida albicans and non-albicans Candida strains in HIV-infected patients. Eur J Clin Microbiol Infect Dis. 1996;15:446–52. http://www.ncbi.nlm.nih.gov/pubmed/8839637.
  55. 55.
    Jin Y, Samaranayake LP, Samaranayake Y, Yip HK. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol. 2004;49:789–98. http://www.ncbi.nlm.nih.gov/pubmed/15308423.
  56. 56.
    Asmundsdóttir LR, Erlendsdóttir H, Agnarsson BA, Gottfredsson M. The importance of strain variation in virulence of Candida dubliniensis and Candida albicans: results of a blinded histopathological study of invasive candidiasis. Clin Microbiol Infect. 2009;15:576–85. http://www.ncbi.nlm.nih.gov/pubmed/19604278.
  57. 57.
    Murray MT, Pizzorno J. Enciclopedia de Medicina Natural. 2a Edicion. Domingo J, editor. Espanha: Ediciones Tutor S.A.; 1998. p. 638.Google Scholar
  58. 58.
    Rubinstein E, Mark Z, Haspel J, Ben-Ari G, Dreznik Z, Mirelman D, et al. Antibacterial activity of the pancreatic fluid. Gastroenterology. 1989;88:927–32.Google Scholar
  59. 59.
    Balch PA. Prescription for nutritional healing. 4th ed. Avery, editor. London: Penguin Group; 2006. p. 869.Google Scholar
  60. 60.
    Balch JF, Stengler M. Prescription for natural cures. John Wiley & Sons I, editor. New Jersey; 2004. p. 724.Google Scholar
  61. 61.
    Brock JH. Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn infant. Arch Dis Child. 1980;55:417–21. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1626933&tool=pmcentrez&rendertype=abstract.
  62. 62.
    Pizzorno Jr. JE, Murray MT, Joiner-Bey H. Manual de Medicina Natural: Toma de decisiones en la clinica. 2nd ed. Elsevier, editor. Barcelona, Espanha: Churchill Livingstone; 2009. p. 824.Google Scholar
  63. 63.
    Serrano R, Bernal D, Simón E, Ariño J. Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem. 2004;279:19698–704. http://www.ncbi.nlm.nih.gov/pubmed/14993228.
  64. 64.
    Pas M, Piskur B, Sustaric M, Raspor P. Iron enriched yeast biomass—a promising mineral feed supplement. Bioresour Technol. 2007;98:1622–8. http://www.ncbi.nlm.nih.gov/pubmed/16935492.
  65. 65.
    Prevorovský M, Stanurová J, Půta F, Folk P. High environmental iron concentrations stimulate adhesion and invasive growth of Schizosaccharomyces pombe. FEMS Microbiol Lett. 2009;293:130–4. http://www.ncbi.nlm.nih.gov/pubmed/19222572.
  66. 66.
    Lan C-Y, Rodarte G, Murillo LA, Jones T, Davis RW, Dungan J, et al. Regulatory networks affected by iron availability in Candida albicans. Mol Microbiol. 2004;53:1451–69. http://www.ncbi.nlm.nih.gov/pubmed/15387822.
  67. 67.
    Schenkels LCPM, Veerman ECI, Amerongen AVN. Biochemical composition of human saliva in relation to other mucosal fluids. Crit Rev Oral Biol Med. 1995;6:161–75. http://cro.sagepub.com/cgi/doi/10.1177/10454411950060020501.
  68. 68.
    Kim J, Han BJ, Kim H, Lee JY, Joo I, Omer S, et al. Th1 immunity induction by ginsenoside Re involves in protection of mice against disseminated candidiasis due to Candida albicans. Int Immunopharmacol. Elsevier B.V.; 2012;14:481–6. http://www.ncbi.nlm.nih.gov/pubmed/22940185.
  69. 69.
    Blanco JL, Garcia ME. Immune response to fungal infections. Vet Immunol Immunopathol. 2008;125:47–70. http://www.ncbi.nlm.nih.gov/pubmed/18565595.
  70. 70.
    Eggimann P, Garbino J, Pittet D. Management of Candida species infections in critically ill patients. Lancet Infect. Dis. 2003;3:772–85.PubMedCrossRefGoogle Scholar
  71. 71.
    Chi H-W, Yang Y-S, Shang S-T, Chen K-H, Yeh K-M, Chang F-Y, et al. Candida albicans versus non-albicans bloodstream infections: the comparison of risk factors and outcome. J Microbiol Immunol Infect. Elsevier Taiwan LLC; 2011;44:369–75. http://www.ncbi.nlm.nih.gov/pubmed/21524971.
  72. 72.
    Wroblewska MM, Swoboda-Kopec E, Rokosz A, Krawczyk E, Marchel H, Luczak M. Epidemiology of clinical isolates of Candida albicans and their susceptibility to triazoles. Int J Antimicrob Agents. 2002;20:472–5. http://www.ncbi.nlm.nih.gov/pubmed/12458145.
  73. 73.
    Abe F, Katoh T, Inaba H, Hotchi M. Experimental candidiasis associated with liver injury—role of transferrin. Mycopathologia. 1988;104:3–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Abe F, Nagata S, Hotchi M. Experimental candidiasis in liver injury. Mycopathologia. 1987;100:37–42. http://www.ncbi.nlm.nih.gov/pubmed/2975353.
  75. 75.
    Katiraee F, Khosravi AR, Khalaj V, Hajiabdolbaghi M, Khaksar A, Rasoolinejad M, et al. Oropharyngeal candidiasis and oral yeast colonization in Iranian Human Immunodeficiency Virus positive patients. J Mycol Med. Elsevier Masson SAS; 2010;20:8–14. http://linkinghub.elsevier.com/retrieve/pii/S1156523309001164.
  76. 76.
    Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi. Lancet. 2002;359:1135–44. http://www.ncbi.nlm.nih.gov/pubmed/11943280.
  77. 77.
    Gerard R, Sendid B, Colombel JF, Poulain D, Jouault T. An immunological link between Candida albicans colonization and Crohn’s disease. Crit Rev Microbiol. 2013;1–5.Google Scholar
  78. 78.
    Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol. Elsevier Ltd; 2011;14:386–91. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3163673&tool=pmcentrez&rendertype=abstract.
  79. 79.
    Trojanowska D, Zwolinska-Wcislo M, Tokarczyk M, Kosowski K, Mach T, Budak A. The role of Candida in inflammatory bowel disease. Estimation of transmission of C. albicans fungi in gastrointestinal tract based on genetic affinity between strains. Int Med J Exp Clin Res. 2010;16:451–7.Google Scholar
  80. 80.
    García-Ruiz JC, Amutio E, Ponton J. Infección fúngica invasora en pacientes inmunodeficientes. Rev Iberoam Micol. 2004;21:55–62.PubMedGoogle Scholar
  81. 81.
    Jawhara S, Thuru X, Standaert-Vitse A, Jouault T, Mordon S, Sendid B, et al. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J Infect Dis. 2008;197:972–80. http://www.ncbi.nlm.nih.gov/pubmed/18419533.
  82. 82.
    Standaert-Vitse A, Jouault T, Vandewalle P, Mille C, Seddik M, Sendid B, et al. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn’s disease. Gastroenterology. 2006;130:1764–75. http://www.ncbi.nlm.nih.gov/pubmed/16697740.
  83. 83.
    Sendid B, Jouault T, Vitse A, Fradin C, Colombel JF, Poulain D. Glycannes pariétaux de levures et anticorps spécifiques. MS Med Sci. 2009;25:473–81.Google Scholar
  84. 84.
    Rehaume LM, Jouault T, Chamaillard M. Lessons from the inflammasome: a molecular sentry linking Candida and Crohn’s disease. Trends Immunol. Elsevier Ltd; 2010;31:171–5. http://www.ncbi.nlm.nih.gov/pubmed/20149741.
  85. 85.
    Gerard R, Sendid B, Techy A, Vernier-Massouille G, Jouault T, Francois N, et al. Candida albicans colonization and anti-glycan antibodies in active and quiescent Crohn’s disease. J Crohn’s Colitis. European’s Crohn’s and Colitis Organisation; 2013:S290–1. http://linkinghub.elsevier.com/retrieve/pii/S1873994613607187.
  86. 86.
    McKenzie H, Main J, Pennington CR, Parratt D. Antibody to selected strains of Saccharomyces cerevisiae (baker’s and brewer’s yeast) and Candida albicans in Crohn’s disease. Gut. 1990;31:536–8. http://gut.bmj.com/cgi/doi/10.1136/gut.31.5.536.
  87. 87.
    García-elorriaga G, Rey-pineda G. Nutrition and intestinal microflora. J Nutr Ther. 2013;2:112–21.Google Scholar
  88. 88.
    Isolauri E, Kirjavainen PV, Salminen S. Probiotics: a role in the treatment of intestinal infection and inflammation? Gut. 2002;50:54–9. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1867676&tool=pmcentrez&rendertype=abstract.
  89. 89.
    Diagnostics G. Diagnostic laboratory testing for wellness & preventive medicine. 2013. http://www.gdx.net/product/10006.
  90. 90.
    Tamura NK, Negri MFN, Bonassoli LA, Svidzinski TIE. Virulence factors for Candida spp recovered from intravascular catheters and hospital workers’ hands. Rev Soc Bras Med Trop. 2007;40:91–3.PubMedCrossRefGoogle Scholar
  91. 91.
    Birmingham N, Payankaulam S, Thanesvorakul S, Stefura B, HayGlass K, Gangur V. An ELISA-based method for measurement of food-specific IgE antibody in mouse serum: an alternative to the passive cutaneous anaphylaxis assay. J Immunol Methods. 2003;275:89–98. http://linkinghub.elsevier.com/retrieve/pii/S0022175903000085.
  92. 92.
    Schubert-Ullrich P, Rudolf J, Ansari P, Galler B, Führer M, Molinelli A, et al. Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Anal Bioanal Chem. 2009;395:69–81. http://www.ncbi.nlm.nih.gov/pubmed/19308361.
  93. 93.
    Ladics GS. Current codex guidelines for assessment of potential protein allergenicity. Food Chem Toxicol. Elsevier Ltd; 2008;46 Suppl 1:20–3. http://www.ncbi.nlm.nih.gov/pubmed/18708115.
  94. 94.
    Van Landschoot A. Gluten-free barley malt beers. Cerevisia. Elsevier B.V.; 2011;36:93–7. http://linkinghub.elsevier.com/retrieve/pii/S137371631100117X.
  95. 95.
    Foster AP, Knowles TG, Moore AH, Cousins PDG, Day MJ, Hall EJ. Serum IgE and IgG responses to food antigens in normal and atopic dogs, and dogs with gastrointestinal disease. Vet Immunol Immunopathol. 2003;92:113–24. http://linkinghub.elsevier.com/retrieve/pii/S0165242703000333.
  96. 96.
    Shahar E, Kriboy N, Pollack S. White cell enhancement in the treatment of severe candidosis. Lancet. 1995;346:974–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Murray MT, Pizzorno J. The Encyclopedia of healing foods. New York, NY: Atria Books; 2005. p. 912.Google Scholar
  98. 98.
    Almeida L de FD, Cavalcanti YW, Viana WP, Lima E de O. Screening da Atividade Antifúngica de Óleos Essenciais sobre Candida albicans. Rev Bras Ciências Saude. 2011;14:51–6.Google Scholar
  99. 99.
    Jantar I bin, Yassin MSM, Chin CB, Chen LL, Sim NL. Antifungal activity of the essential oils of nine Zingiberaceae species. Pharm Biol. 2003;41:392–7.Google Scholar
  100. 100.
    Joe MM, Jayachitra J, Vijayapriya M. Antimicrobial activity of some common spices against certain human pathogens. J Med Plants Res. 2009;3:1134–6.Google Scholar
  101. 101.
    Taguchi Y, Takizawa T, Ishibashi H, Sagawa T, Arai R, Inoue S, et al. Therapeutic effects on murine oral candidiasis by oral administration of cassia (Cinnamomum cassia) preparation. Nihon Ishinkin Gakkai Zasshi. 2010;51:13–21. http://www.ncbi.nlm.nih.gov/pubmed/20185867.
  102. 102.
    Höferl M, Buchbauer G, Jirovetz L, Schmidt E, Stoyanova A, Denkova Z, et al. Correlation of antimicrobial activities of various essential oils and their main aromatic volatile constituents. J Essent Oil Res. 2009;21:459–64.CrossRefGoogle Scholar
  103. 103.
    Roby MHH, Sarhan MA, Selim KA-H, Khalel KI. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind Crops Prod. Elsevier B.V.; 2013;44:437–45. http://linkinghub.elsevier.com/retrieve/pii/S092666901200564X.
  104. 104.
    Bail S, Buchbauer G, Jirovetz L, Denkova Z, Slavchev A, Stoyanova A, et al. Antimicrobial activities of roman chamomile oil from France and its main compounds. J Essent Oil Res. 2009;21:283–7.CrossRefGoogle Scholar
  105. 105.
    Ertürk Ö. Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia (Bratisl). 2006;61:275–8. http://www.springerlink.com/index/10.2478/s11756-006-0050-8.
  106. 106.
    Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem. 2007;55:7879–85. http://www.ncbi.nlm.nih.gov/pubmed/17708648.
  107. 107.
    Carretto C de FP, Navas EAF de A, Paradella TC, Oliveira LD de, Junqueira JC, Jorge AOC. Efeitos do chá de tomilho sobre a aderência in vitro de Streptococcus mutans ao esmalte dentário e Candida albicans à resina acrílica. Rev Oncol UNESP. 2007;36:281–6.Google Scholar
  108. 108.
    Abdul BA, Hassan AM, Hassan AS. In vitro antimicrobial activity of Thymus vulgaris, Origanum vulgare and Rosmarinus officinalis against dental caries pathogens. Haitham J Pure Appl Sci. 2012;25:1–7.Google Scholar
  109. 109.
    Van Vuuren SF, Suliman S, Viljoen AM. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol. 2009;48:440–6. http://www.ncbi.nlm.nih.gov/pubmed/19187494.
  110. 110.
    Murray MT. The healing power of herbs. 2nd ed. Gramercy Books, editor. New York, NY: Random House; 2004.Google Scholar
  111. 111.
    Vanaclocha B, Cañigueral S. Fitoterapia: Vademecum de Prescripción. 4th ed. Masson, editor. Barcelona; 2003.Google Scholar
  112. 112.
    Amara AA, Shibl A. Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharm J. King Saud University; 2013;1–8. http://linkinghub.elsevier.com/retrieve/pii/S1319016413000819.
  113. 113.
    Kaur IP, Kuhad A, Garg A, Chopra K. Probiotics: delineation of prophylactic and therapeutic benefits. J Med Food. 2009;12:219–35. http://www.ncbi.nlm.nih.gov/pubmed/19459724.

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Natália Martins
    • 1
    • 2
  • Isabel C. F. R. Ferreira
    • 1
  • Lillian Barros
    • 1
  • Sónia Silva
    • 2
  • Mariana Henriques
    • 2
  1. 1.Mountain Research Centre (CIMO), ESAPolytechnic Institute of BragançaBragançaPortugal
  2. 2.IBB - Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations