Antifungal Activity of Nanocapsule Suspensions Containing Tea Tree Oil on the Growth of Trichophyton rubrum


The aim of this study was to evaluate, for the first time, the antifungal efficacy of nanocapsules and nanoemulsions containing Melaleuca alternifolia essential oil (tea tree oil) in an onychomycosis model. The antifungal activity of nanostructured formulations was evaluated against Trichophyton rubrum in two different in vitro models of dermatophyte nail infection. First, nail powder was infected with T. rubrum in a 96-well plate and then treated with the formulations. After 7 and 14 days, cell viability was verified. The plate counts for the samples were 2.37, 1.45 and 1.0 log CFU mL−1 (emulsion, nanoemulsion containing tea tree oil and nanocapsules containing tea tree oil, respectively). A second model employed nails fragments which were infected with the microorganism and treated with the formulations. The diameter of fungal colony was measured. The areas obtained were 2.88 ± 2.08 mm2, 14.59 ± 2.01 mm2, 40.98 ± 2.76 mm2 and 38.72 ± 1.22 mm2 for the nanocapsules containing tea tree oil, nanoemulsion containing tea tree oil, emulsion and untreated nail, respectively. Nail infection models demonstrated the ability of the formulations to reduce T. rubrum growth, with the inclusion of oil in nanocapsules being most efficient.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Bakkali F, Averbeck S, Averbeck D, Idaormar M. Biological effects of essential oils—A review. Food Chem Toxicol. 2008;46:446–75.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Hart PH, Brand C, Carson CF, Riley TV, Prager RH, Finlay-Jones JJ. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm Res. 2000;49:619–26.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev. 2006;19(Suppl. 1):50–62.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Hammer KA, Carson CF, Riley TV, Nielsen JB. A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food Chem Toxicol. 2006;44:616–25.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights. 2007;2:147–57.

    PubMed  Google Scholar 

  6. 6.

    Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine. 2010;6:9–24.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Noskin GA, Rubin RR, Schentag JJ, Kluytmans J, Hedblom EC, Smulders M, Lapentina E, Gemmen E. The burden of Staphylococcus aureus infections on hospitals in the United States. Arch Intern Med. 2005;165(Suppl. 15):1756–61.

    PubMed  Article  Google Scholar 

  8. 8.

    Sidrim JJC, Rocha MFG. Micologia médica à luz de autores contemporâneos. Guanabara Koogan S.A., Copyright, Rio de Janeiro, RJ; 2004.

  9. 9.

    Degreef H. Clinical forms of dermatophytosis (Ringworm infection). Mycopathologia. 2008;166:257–65.

    PubMed  Article  Google Scholar 

  10. 10.

    Nakashima T, Nozawa A, Ito T, Majima T. Experimental tinea unguium model to assess topical antifungal agents using the infected human nail with dermatophyte in vitro. J. Infect Chemother. 2002;8:331–5.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Marty JPL. Amorolfine nail lacquer: a novel formulation. J Eur Acad Dermatol Venereol. 1995;4(Suppl. 1):17–21.

    Article  Google Scholar 

  12. 12.

    Baran R, Tosti A, Hartmane I, Altmeyer P, Hercogova J, Koudelkova V, Rozicka T, Combemale P, Mikazans I. An innovative water-soluble biopolymer improves efficacy of ciclopirox nail lacquer in the management of onychomycosis. J Eur Acad Dermatol Venereol. 2009;23:773–81.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Murdan S. Drug delivery to the nail following topical application. Int J Pharm. 2002;236:1–26.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Kobayashi Y, Komatsu T, Sumi M, Numajiri S, Miyamoto M, Kobayashi K, Morimoto Y. In vitro permeation of several drugs through the human nail plate: relationship between physicochemical properties and nail permeability of drugs. Eur J Pharm Sci. 2004;21:471–7.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Flores FC, Ribeiro RF, Ourique AF, Pohlmann AR, Beck RCR, Guterres SS, Rolim CMB, Silva CB. Nanostructured systems containing an essential oil: protection against volatilization. Quim Nova. 2011;34:968–72.

    Article  CAS  Google Scholar 

  16. 16.

    Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int J Pharm. 2004;280:241–51.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Fessi H, Puisieux F, Devissaguet JPh, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(Suppl. 1):R1–4.

    Article  CAS  Google Scholar 

  18. 18.

    Schaller M, Borelli C, Berger U, Walker B, Schimdt S, Weind G, Jäckels A. Susceptibility testing of apomorphine, bifonazole and ciclopiroxolamine against Trichophyton rubrum in an in vitro model of dermatophyte nail infection. Med Mycol. 2009;47:753–8.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Yang D, Michel L, Chaumont JP, Millet-Clerc J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. 1999;148:79–82.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Paulo CSO, Vidal M, Ferreira LS. Antifungal nanoparticles and surfaces. Biomacromolecules. 2010;11:2810–7.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Muralimohan A, Eun Y-J, Bhattacharyya B, Weibel DB. Dissecting microbiological systems using materials science. Trends Microbiol. 2009;17(Suppl. 3):100–8.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Lboutounne H, Chaulet JF, Ploton C, Falson F, Pirota P. Sustained ex vivo skin antiseptic activity of chlorhexidine in poly(e-caprolactone) nanocapsule encapsulated form and as a Digluconate. J. Control. Release. 2002;82:319–34.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO Nanoparticles- an antimicrobial study. Sci Technol Adv Mater. 2008;9:35004–11.

    Article  Google Scholar 

  24. 24.

    Nhung DTT, Freydiere AM, Constant H, Falson F, Pirot F. Sustained antibacterial effect of a hand rub gel incorporating chlorhexidine-loaded nanocapsules (Nanochlorex®). Int J Pharm. 2007;334:166–72.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Ranjita S, Loaye AS, Khalil M. Present status of nanoparticle research for treatment of tuberculosis. J. Pharm. Pharm. Sci. 2011;4(Suppl. 1):100–16.

    Google Scholar 

  26. 26.

    Gunt H, Kasting GB. Effect of hydration on the permeation of ketoconazole through human nail plate in vitro. Eur J Pharm Sci. 2007;32:254–60.

    PubMed  Article  CAS  Google Scholar 

Download references


The authors thank to CNPq-Brasília/Brazil for financial support.

Author information



Corresponding author

Correspondence to Cristiane Bona da Silva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Flores, F.C., de Lima, J.A., Ribeiro, R.F. et al. Antifungal Activity of Nanocapsule Suspensions Containing Tea Tree Oil on the Growth of Trichophyton rubrum . Mycopathologia 175, 281–286 (2013).

Download citation


  • Nanoemulsions
  • Nanocapsules
  • Tea tree oil
  • Trichophyton rubrum
  • Onychomycosis