, Volume 175, Issue 3–4, pp 281–286 | Cite as

Antifungal Activity of Nanocapsule Suspensions Containing Tea Tree Oil on the Growth of Trichophyton rubrum

  • F. C. Flores
  • J. A. de Lima
  • R. F. Ribeiro
  • S. H. Alves
  • C. M. B. Rolim
  • R. C. R. Beck
  • Cristiane Bona da SilvaEmail author


The aim of this study was to evaluate, for the first time, the antifungal efficacy of nanocapsules and nanoemulsions containing Melaleuca alternifolia essential oil (tea tree oil) in an onychomycosis model. The antifungal activity of nanostructured formulations was evaluated against Trichophyton rubrum in two different in vitro models of dermatophyte nail infection. First, nail powder was infected with T. rubrum in a 96-well plate and then treated with the formulations. After 7 and 14 days, cell viability was verified. The plate counts for the samples were 2.37, 1.45 and 1.0 log CFU mL−1 (emulsion, nanoemulsion containing tea tree oil and nanocapsules containing tea tree oil, respectively). A second model employed nails fragments which were infected with the microorganism and treated with the formulations. The diameter of fungal colony was measured. The areas obtained were 2.88 ± 2.08 mm2, 14.59 ± 2.01 mm2, 40.98 ± 2.76 mm2 and 38.72 ± 1.22 mm2 for the nanocapsules containing tea tree oil, nanoemulsion containing tea tree oil, emulsion and untreated nail, respectively. Nail infection models demonstrated the ability of the formulations to reduce T. rubrum growth, with the inclusion of oil in nanocapsules being most efficient.


Nanoemulsions Nanocapsules Tea tree oil Trichophyton rubrum Onychomycosis 



The authors thank to CNPq-Brasília/Brazil for financial support.


  1. 1.
    Bakkali F, Averbeck S, Averbeck D, Idaormar M. Biological effects of essential oils—A review. Food Chem Toxicol. 2008;46:446–75.PubMedCrossRefGoogle Scholar
  2. 2.
    Hart PH, Brand C, Carson CF, Riley TV, Prager RH, Finlay-Jones JJ. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm Res. 2000;49:619–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev. 2006;19(Suppl. 1):50–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Hammer KA, Carson CF, Riley TV, Nielsen JB. A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food Chem Toxicol. 2006;44:616–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights. 2007;2:147–57.PubMedGoogle Scholar
  6. 6.
    Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine. 2010;6:9–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Noskin GA, Rubin RR, Schentag JJ, Kluytmans J, Hedblom EC, Smulders M, Lapentina E, Gemmen E. The burden of Staphylococcus aureus infections on hospitals in the United States. Arch Intern Med. 2005;165(Suppl. 15):1756–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Sidrim JJC, Rocha MFG. Micologia médica à luz de autores contemporâneos. Guanabara Koogan S.A., Copyright, Rio de Janeiro, RJ; 2004.Google Scholar
  9. 9.
    Degreef H. Clinical forms of dermatophytosis (Ringworm infection). Mycopathologia. 2008;166:257–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Nakashima T, Nozawa A, Ito T, Majima T. Experimental tinea unguium model to assess topical antifungal agents using the infected human nail with dermatophyte in vitro. J. Infect Chemother. 2002;8:331–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Marty JPL. Amorolfine nail lacquer: a novel formulation. J Eur Acad Dermatol Venereol. 1995;4(Suppl. 1):17–21.CrossRefGoogle Scholar
  12. 12.
    Baran R, Tosti A, Hartmane I, Altmeyer P, Hercogova J, Koudelkova V, Rozicka T, Combemale P, Mikazans I. An innovative water-soluble biopolymer improves efficacy of ciclopirox nail lacquer in the management of onychomycosis. J Eur Acad Dermatol Venereol. 2009;23:773–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Murdan S. Drug delivery to the nail following topical application. Int J Pharm. 2002;236:1–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Kobayashi Y, Komatsu T, Sumi M, Numajiri S, Miyamoto M, Kobayashi K, Morimoto Y. In vitro permeation of several drugs through the human nail plate: relationship between physicochemical properties and nail permeability of drugs. Eur J Pharm Sci. 2004;21:471–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Flores FC, Ribeiro RF, Ourique AF, Pohlmann AR, Beck RCR, Guterres SS, Rolim CMB, Silva CB. Nanostructured systems containing an essential oil: protection against volatilization. Quim Nova. 2011;34:968–72.CrossRefGoogle Scholar
  16. 16.
    Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int J Pharm. 2004;280:241–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Fessi H, Puisieux F, Devissaguet JPh, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(Suppl. 1):R1–4.CrossRefGoogle Scholar
  18. 18.
    Schaller M, Borelli C, Berger U, Walker B, Schimdt S, Weind G, Jäckels A. Susceptibility testing of apomorphine, bifonazole and ciclopiroxolamine against Trichophyton rubrum in an in vitro model of dermatophyte nail infection. Med Mycol. 2009;47:753–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Yang D, Michel L, Chaumont JP, Millet-Clerc J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. 1999;148:79–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Paulo CSO, Vidal M, Ferreira LS. Antifungal nanoparticles and surfaces. Biomacromolecules. 2010;11:2810–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Muralimohan A, Eun Y-J, Bhattacharyya B, Weibel DB. Dissecting microbiological systems using materials science. Trends Microbiol. 2009;17(Suppl. 3):100–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Lboutounne H, Chaulet JF, Ploton C, Falson F, Pirota P. Sustained ex vivo skin antiseptic activity of chlorhexidine in poly(e-caprolactone) nanocapsule encapsulated form and as a Digluconate. J. Control. Release. 2002;82:319–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO Nanoparticles- an antimicrobial study. Sci Technol Adv Mater. 2008;9:35004–11.CrossRefGoogle Scholar
  24. 24.
    Nhung DTT, Freydiere AM, Constant H, Falson F, Pirot F. Sustained antibacterial effect of a hand rub gel incorporating chlorhexidine-loaded nanocapsules (Nanochlorex®). Int J Pharm. 2007;334:166–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Ranjita S, Loaye AS, Khalil M. Present status of nanoparticle research for treatment of tuberculosis. J. Pharm. Pharm. Sci. 2011;4(Suppl. 1):100–16.Google Scholar
  26. 26.
    Gunt H, Kasting GB. Effect of hydration on the permeation of ketoconazole through human nail plate in vitro. Eur J Pharm Sci. 2007;32:254–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • F. C. Flores
    • 1
  • J. A. de Lima
    • 2
  • R. F. Ribeiro
    • 1
  • S. H. Alves
    • 1
  • C. M. B. Rolim
    • 1
  • R. C. R. Beck
    • 3
  • Cristiane Bona da Silva
    • 1
    • 2
    Email author
  1. 1.Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Departamento de Farmácia Industrial, Curso de Farmácia, Centro de Ciências da SaúdeUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations