Skip to main content

Advertisement

Log in

DNA-hsp65 Vaccine as Therapeutic Strategy to Treat Experimental Chromoblastomycosis Caused by Fonsecaea Pedrosoi

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Chromoblastomycosis (CBM) is a chronic subcutaneous mycosis, caused by several dimorphic, pigmented dematiaceous fungi. Patients with the disease are still considered a therapeutic challenge, mainly due to its recalcitrant nature. There is no “gold standard” treatment for this neglected mycosis, but rather there are several treatment options. Chemotherapy alternatives include 5-flucytosine, itraconazole, terbinafine, fluconazole, thiabendazole, ketoconazole and amphotericin B, although the healing of severe cases is still uncommon. However, several studies have reported the DNA vaccine to be promising in the treatment for fungal infections; this vaccine allows the host to restore depressed cellular immunity, minimizing the toxic effects from conventional antifungal therapies. This work was therefore carried out aiming to establish a suitable model for experimental CBM, suggesting also new therapies, including DNA-hsp65 vaccine. By analyzing the morphometrical and histopathological aspects and by quantifying the fungal burden, the results showed the establishment of a chronic, although transitory, experimental CBM model with lesions similar to those presented in humans. A treatment regimen using intralesional itraconazole or amphotericin B was effective in treating experimental CBM, as was a therapy using naked DNA-hsp65 vaccine. It has also been shown that chemotherapy associated with DNA-hsp65 vaccine is promising in the treatment for CBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. López Martínez R, Méndez Tovar LJ. Chromoblastomycosis. Clin Dermatol. 2007;25:188–94.

    Article  PubMed  Google Scholar 

  2. Queiroz-Telles F, Esterre P, Perez-Blanco M, Vitale RG, Salgado CG, Bonifaz A. Chromoblastomycosis: an overview of clinical manifestations, diagnosis and treatment. Med Mycol. 2009;47:3–15.

    Article  PubMed  Google Scholar 

  3. Esterre P, Peyrol S, Sainte-Marie D, Pradinaud R, Grimaud JA. Granulomatous reaction and tissue remodelling in the cutaneous lesion of chromomycosis. Virchows Archiv A Pathol Anat Histopathol. 1993;422:285–91.

    Article  CAS  Google Scholar 

  4. Farbiarz SR, de Carvalho TU, Alviano C, De Souza W. Inhibitory effect of melanin on the interaction of Fonsecaea pedrosoi with mammalian cells in vitro. J Med Vet Mycol. 1992;30:265–73.

    Article  PubMed  CAS  Google Scholar 

  5. Bocca AL, Brito PPMS, Figueiredo F, Tosta CE. Inhibition of nitric oxide production by macrophages in chromoblastomycosis: a role for Fonsecaea pedrosoi melanin. Mycopathologia. 2006;161:195–203.

    Article  PubMed  CAS  Google Scholar 

  6. Cunha MML, Franzen AJ, Seabra SH, Herbst MH, Vugman, NV, Borba LP, De Souza W, Rosental S. Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiol. 2010;10:80.

    Google Scholar 

  7. Esterre P, Jahevitra M, Andriantsimahavandy A. Humoral immune response in chromoblastomycosis during and after therapy. Clin Diagn Lab Immunol. 2000;7:497–500.

    PubMed  CAS  Google Scholar 

  8. Gimenes MF, Souza MG, Ferreira KS, Marques SG, Gonçalves AG, Santos VCL. Pedroso e Silva CDM, Almeida SR. Cytokines and lymphocyte proliferation in patients with different clinical forms of chromoblastomycosis. Microbes Infect. 2005;7:708–13.

    Article  CAS  Google Scholar 

  9. Ahrens J, Graybill JR, Abishawl A, Tio FO, Rinaldi MG. Experimental murine chromomycosis mimicking chronic progressive human disease. Am J Trop Med Hyg. 1989;40:651–8.

    PubMed  CAS  Google Scholar 

  10. Lopes CF, Alvarenga RJ, Cisalpino EO, Resende MA, Oliveira LG. Six years’ experience in treatment of chromomycosis with 5-fluorocytosine. Int J Dermatol. 1978;17:414–8.

    PubMed  CAS  Google Scholar 

  11. Diaz M, Negroni R, Montero-Gei F, Castro LG, Sampaio SA, Borelli D, Restrepo A, Franco L, Bran JL, Arathoon EG. A Pan-American 5-year study of fluconazole therapy for deep mycoses in the immunocompetent host. Pan-American Study Group. Clin Infect Dis. 1992;14(Suppl 1):S68–76.

    Article  PubMed  Google Scholar 

  12. Arce-Fonseca M, Ramos-Ligonio A, López-Monteón A, Salgado-Jiménez B, Talamás-Rohana P, Rosales-Encina JL. A DNA vaccine encoding for TcSSP4 induces protection against acute and chronic infection in experimental chagas disease. Int J Biol Sci. 2011;7:1230–8.

    Article  PubMed  CAS  Google Scholar 

  13. Domínguez-Bernal G, Horcajo P, Orden JA, De La Fuente R, Herrero-Gil A, Ordóñez-Gutiérrez L, Carrion J. Mitigating an undesirable immune response of inherent susceptibility to cutaneous leishmaniosis in a mouse model: the role of the pathoantigenic HISA70 DNA vaccine. Vet Res. 2012;43:59.

    Article  PubMed  Google Scholar 

  14. Wu W, Huang L, Mendez S. A live Leishmania major vaccine containing CpG motifs induces the de novo generation of Th17 cells in C57BL/6 mice. Eur J Immunol. 2010;40:2517–27.

    Article  PubMed  CAS  Google Scholar 

  15. Abdul-Wahid A, Faubert G. Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle. Vaccine. 2007;25:8372–83.

    Article  PubMed  CAS  Google Scholar 

  16. Gu Q-L, Huang X, Ren W-H, Shen L, Liu B-Y, Chen S-Y. Targeting hepatitis B virus antigens to dendritic cells by heat shock protein to improve DNA vaccine potency. World J Gastroenterol. 2007;13:5911–7.

    PubMed  CAS  Google Scholar 

  17. Okada M, Kita Y. Tuberculosis vaccine development: the development of novel (preclinical) DNA vaccine. Hum Vaccin. 2010;6:297–308.

    Article  PubMed  CAS  Google Scholar 

  18. Li JL, Liu HL, Zhang XR, Xu JP, Hu WK, Liang M, Chen SY, Hu F, Chu DT. A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Ther. 2009;16:376–82.

    Article  PubMed  CAS  Google Scholar 

  19. Oglesbee MJ, Pratt M, Carsillo T. Role for heat shock proteins in the immune response to measles virus infection. Viral Immunol. 2002;15:399–416.

    Article  PubMed  CAS  Google Scholar 

  20. Scheckelhoff M, Deepe GS. The protective immune response to heat shock protein 60 of Histoplasma capsulatum is mediated by a subset of V beta 8.1/8.2 + T cells. J Immunol. 2002;169:5818–26.

    PubMed  CAS  Google Scholar 

  21. Ferraz JC, Stavropoulos E, Yang M, Coade S, Espitia C, Lowrie DB, Colston MJ, Tascon RE. A heterologous DNA priming-Mycobacterium bovis BCG boosting immunization strategy using mycobacterial Hsp70, Hsp65, and Apa antigens improves protection against tuberculosis in mice. Infect Immunol. 2004;72:6945–50.

    Article  CAS  Google Scholar 

  22. Matthews RC, Burnie JP, Howat D, Rowland T, Walton F. Autoantibody to heat-shock protein 90 can mediate protection against systemic candidiasis. Immunology. 1991;74:20–4.

    PubMed  CAS  Google Scholar 

  23. Matthews R, Hodgetts S, Burnie J. Preliminary assessment of a human recombinant antibody fragment to hsp90 in murine invasive candidiasis. J Infec Dis. 1995;171:1668–71.

    Article  CAS  Google Scholar 

  24. Lowrie DB, Tascon RE, Bonato VL, Lima VM, Faccioli LH, Stavropoulos E, Colston MJ, Hewinson RG, Moelling K, Silva CL. Therapy of tuberculosis in mice by DNA vaccination. Nature. 1999;400:269–71.

    Article  PubMed  CAS  Google Scholar 

  25. Silva CL, Bonato VLD, Coelho-Castelo AAM, De Souza AO, Santos SA, Lima KM, Faccioli LH, Rodrigues JM. Immunotherapy with plasmid DNA encoding mycobacterial hsp65 in association with chemotherapy is a more rapid and efficient form of treatment for tuberculosis in mice. Gene Ther. 2005;12:281–7.

    Article  PubMed  CAS  Google Scholar 

  26. de Paula L, Silva CL, Carlos D, Matias-Peres C, Sorgi CA, Soares EG, Souza PRM, Bladés CR, Galleti FC, Bonato VL, Gonçalves ED, Silva EV, Faccioli LH. Comparison of different delivery systems of DNA vaccination for the induction of protection against tuberculosis in mice and guinea pigs. Genet Vaccines Ther. 2007;5:2.

    Article  PubMed  Google Scholar 

  27. Coelho EA, Tavares CA, Lima KM, Silva CL, Rodrigues JM Jr, Fernandes AP. Mycobacterium hsp65 DNA entrapped into TDM-loaded PLGA microspheres induces protection in mice against Leishmania (Leishmania) major infection. Parasitol Res. 2006;98:568–75.

    Article  PubMed  Google Scholar 

  28. Ribeiro AM, Bocca AL, Amaral AC, Faccioli LH, Galetti FCS, Zárate-Bladés CR, Figueiredo F, Silva CL, Felipe MS. DNAhsp65 vaccination induces protection in mice against Paracoccidioides brasiliensis infection. Vaccine. 2009;27:606–13.

    Article  PubMed  CAS  Google Scholar 

  29. Ribeiro AM, Bocca AL, Amaral AC, Souza ACO, Faccioli LH, Coelho-Castelo AAM, Figueiredo F, Silva CL, Felipe MS. HSP65 DNA as therapeutic strategy to treat experimental paracoccidioidomycosis. Vaccine. 2010;28:1528–34.

    Article  PubMed  CAS  Google Scholar 

  30. Coelho-Castelo AAM, Trombone AP, Rosada RS, Santos RR, Bonato VLD, Sartori A, Silva CL. Tissue distribution of a plasmid DNA encoding Hsp65 gene is dependent on the dose administered through intramuscular delivery. Genet Vaccines Ther. 2006;4:1.

    Article  PubMed  CAS  Google Scholar 

  31. Coelho-Castelo AAM, Santos Júnior RR, Bonato VLD, Jamur MC, Oliver C, Silva CL. B-lymphocytes in bone marrow or lymph nodes can take up plasmid DNA after intramuscular delivery. Hum Gene Ther. 2003;14:1279–85.

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt HH, Wilke P, Evers B, Böhme E. Enzymatic formation of nitrogen oxides from l-arginine in bovine brain cytosol. Biochem Bioph Res Com. 1989;165:284–91.

    Article  CAS  Google Scholar 

  33. Green LC, Tannenbaum SR, Goldman P. Nitrate synthesis in the germfree and conventional rat. Science. 1981;212:56–8.

    Article  PubMed  CAS  Google Scholar 

  34. Gimenes VMF, Criado PR, Martins JEC, Almeida SR. Cellular immune response of patients with chromoblastomycosis undergoing antifungal therapy. Mycopathologia. 2006;162:97–101.

    Article  PubMed  CAS  Google Scholar 

  35. de Melo-Júnior MR, de Lima-Neto RG, Lacerda AM, Beltrão EIC. Comparative analysis of extracellular matrix and cellular carbohydrate expression in the sporotrichosis and chromoblastomycosis. Mycopathologia. 2011;171:403–9.

    Article  PubMed  Google Scholar 

  36. Xie Z, Zhang J, Xi L, Li X, Wang L, Lu C, Sun J. A chronic chromoblastomycosis model by Fonsecaea monophora in Wistar rat. Med Mycol. 2010;48:201–6.

    Article  PubMed  Google Scholar 

  37. Machado AP, Silva MRR, Fischman O. Local phagocytic responses after murine infection with different forms of Fonsecaea pedrosoi and sclerotic bodies originating from an inoculum of conidiogenous cells. Mycoses. 2011;54:202–11.

    Article  PubMed  Google Scholar 

  38. Marques AF, da Silva MB, Juliano MAP, Travassos LR, Taborda CP. Peptide immunization as an adjuvant to chemotherapy in mice challenged intratracheally with virulent yeast cells of Paracoccidioides brasiliensis. Antimicrob Agents Chemother. 2006;50:2814–9.

    Article  PubMed  CAS  Google Scholar 

  39. Amaral AC, Marques AF, Muñoz JE, Bocca AL, Simioni AR, Tedesco AC, Morais PC, Travassos LR, Taborda CP, Felipe MS. Poly(lactic acid-glycolic acid) nanoparticles markedly improve immunological protection provided by peptide P10 against murine paracoccidioidomycosis. Br J Pharmacol. 2010;159(5):1126–32.

    Article  PubMed  CAS  Google Scholar 

  40. Marques AF, da Silva MB, Juliano MAP, Munhõz JE, Travassos LR, Taborda CP. Additive effect of P10 immunization and chemotherapy in anergic mice challenged intratracheally with virulent yeasts of Paracoccidioides brasiliensis. Microbes Infect. 2008;10(12–13):1251–8.

    Article  PubMed  CAS  Google Scholar 

  41. Zelante T, Montagnoli C, Bozza S, Gaziano R, Bellocchio S, Bonifazi P, Moretti S, Moretti S, Fallarino F, Puccetti P, Romani L. Receptors and pathways in innate antifungal immunity: the implication for tolerance and immunity to fungi. Adv Exp Med Biol. 2007;590:209–21.

    Article  PubMed  Google Scholar 

  42. Rozental S, Alviano CS, de Souza W. Fine structure and cytochemical study of the interaction between Fonsecaea pedrosoi and rat polymorphonuclear leukocyte. J Med Vet Mycol. 1996;34:323–30.

    Article  PubMed  CAS  Google Scholar 

  43. Fałkowska-Podstawka M, Wernicki A. Heat shock proteins in health and disease. Pol J Vet Sci. 2003;6(1):61–70.

    PubMed  Google Scholar 

  44. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA. DNA vaccines. Annu Rev Immunol. 1997;15:617–48.

    Article  PubMed  CAS  Google Scholar 

  45. Orme IM, Roberts AD, Griffin JP, Abrams JS. Cytokine secretion by CD4 T lymphocytes acquired in response to Mycobacterium tuberculosis infection. J Immunol. 1993;151:518–25.

    PubMed  CAS  Google Scholar 

  46. Cano LE, Kashino SS, Arruda C, André D, Xidieh CF, Singer-Vermes LM, Vaz CA, Burger E, Calich VL. Protective role of gamma interferon in experimental pulmonary paracoccidioidomycosis. Infect Immunol. 1998;66:800–6.

    CAS  Google Scholar 

  47. Bocca AL, Hayashi EE, Pinheiro AG, Furlanetto AB, Campanelli AP, Cunha FQ, Figueiredo F. Treatment of Paracoccidioides brasiliensis-infected mice with a nitric oxide inhibitor prevents the failure of cell-mediated immune response. J Immunol. 1998;161:3056–63.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF), Conselho Nacional de Pesquisa (CNPq) and Decanato de Pesquisa e Pós-Graduação da Universidade de Brasília (DPP/UnB) for financial support, CAPES for graduate students grants and Viviane Monteiro Leal for technical assistance in the immunohistochemical assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anamélia Lorenzetti Bocca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siqueira, I.M., Ribeiro, A.M., de Medeiros Nóbrega, Y.K. et al. DNA-hsp65 Vaccine as Therapeutic Strategy to Treat Experimental Chromoblastomycosis Caused by Fonsecaea Pedrosoi . Mycopathologia 175, 463–475 (2013). https://doi.org/10.1007/s11046-012-9599-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-012-9599-7

Keywords

Navigation