, Volume 175, Issue 1–2, pp 147–151 | Cite as

Assessment of Plant Lectin Antifungal Potential Against Yeasts of Major Importance in Medical Mycology

  • Gabriel Baracy KlafkeEmail author
  • Gustavo Marçal Schmitt Garcia Moreira
  • Leonardo Garcia Monte
  • Juliano Lacava Pereira
  • Tchana Martinez Brandolt
  • Melissa Orzechowski Xavier
  • Tatiane Santi-Gadelha
  • Odir Antonio Dellagostin
  • Luciano da Silva Pinto


The search for new compounds with antifungal activity is accelerating due to rising yeast and fungal resistance to commonly prescribed drugs. Among the molecules being investigated, plant lectins can be highlighted. The present work shows the potential of six plant lectins which were tested in vitro against yeasts of medical importance, Candida albicans, Candida tropicalis, Candida parapsilosis, Cryptococcus gattii, Cryptococcus neoformans, Malassezia pachydermatis, Rhodotorula sp. and Trichosporon sp. Broth microdilution susceptibility testing was performed in accordance with standard protocols to evaluate antifungal activity. Minimum inhibitory concentration (MIC) was determined at 80 % yeast growth inhibition, whereas the minimum fungicidal concentration (MFC) was evaluated after making the subcultures of each dilution. Only C. parapsilosis growth was inhibited by the lectins tested. Abelmoschus esculentus lectin showed the highest MIC (0.97 μg ml−1). Lectins from Canavalia brasiliensis, Mucuna pruriens and Clitoria fairchildiana presented the highest MFC at (3.90 μg ml−1). These results encourage further studies with wider yeast strain selections, and open new perspectives for the development of pharmacological molecules.


Yeast diseases Candida sp. Abelmoschus esculentus Lectin 



We acknowledge CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the financial support and the scholarship granted to G.B. Klafke and L.G. Monte; and FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul) for the scholarship granted to G.M.S.G. Moreira.


  1. 1.
    Motsei ML, Lindsey KL, Van SJ, Jager AK. Screening of traditionally used South African plants for antifungal activity against Candida albicans. J Ethnopharmacol. 2003;86:235–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Colombo AL, Guimaraes T. Epidemiology of hematogenous infections due to Candida spp. Rev Soc Bras Med Trop. 2003;36:599–607.PubMedCrossRefGoogle Scholar
  3. 3.
    Moretti-Branch ML, Fukushima K, Schreiber AZ, Nishimura K, Papaiordanou PM, Trabasso P, Tanaka R, Miyaji M. Trichosporon species infection in bone marrow transplanted patients. Diagn Microbiol Infect Dis. 2001;39:161–4.CrossRefGoogle Scholar
  4. 4.
    Gomez-Lopez A, Mellado E, Rodriguez-Tudela JL, Cuenca-Estrella M. Susceptibility profile of 29 clinical isolates of Rhodotorula spp. and literature review. J Antimicrob Chem. 2005;55:312–6.CrossRefGoogle Scholar
  5. 5.
    Khawcharoenporn T, Apisarnthanarak A, Mundy LM. Non-neoformans cryptococcal infections: a systematic review. Infection. 2007;35:51–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Hamza OJM, van den Bout-van den Beukel, Matee MIN, Moshi MJ, Mikx FHM, Selemani HO, Mbwambo ZH, van der Ven AJAM, Verweij PE. Antifungal activity of some Tanzanian plants used traditionally for the treatment of fungal infections. J Ethnopharmacol. 2006;108:124–132.Google Scholar
  7. 7.
    Shanmugham LN, Castellani ML, Salini V, Falasca K, Vecchiet J, Conti P, Petrarca C. Relevance of plant lectins in human cell biology and immunology. Riv Biol. 2006;99:227–49.PubMedGoogle Scholar
  8. 8.
    van Peumans WJ, Damme EJ. Lectins as plant defense proteins. Plant Physiol. 1995;109:347–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Sharon N, Lis H. Legume lectins–a large family of homologous proteins. FASEB J. 1990;4:3198–208.PubMedGoogle Scholar
  10. 10.
    Lis H, Sharon N. Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev. 1998;98:637–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Guzman-Partida AM, Robles-Burgueno MR, Ortega-Nieblas M, Vazquez-Moreno I. Purification and characterization of complex carbohydrate specific isolectins from wild legume seeds: Acacia constricta is (vinorama) highly homologous to Phaseolus vulgaris lectins. Biochimie. 2004;86:335–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Boleti AP, Freire MG, Coelho MB, Silva W, Baldasso PA, Gomes VM, Marangoni S, Novello JC, Macedo ML. Insecticidal and antifungal activity of a protein from Pouteria torta seeds with lectin-like properties. J Agric Food Chem. 2007;55:2653–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Swanson MD, Winter HC, Goldstein IJ, Markovitz DM. A lectin isolated from bananas is a potent inhibitor of HIV replication. J Biol Chem. 2010;285:8646–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Oliveira MD, Andrade CA, Santos-Magalhaes NS, Coelho LC, Teixeira JA, Carneiro-da-Cunha MG, Correia MT. Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity. Lett Appl Microbiol. 2008;46:371–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Pinheiro AQ, Melo DF, Macedo LM, Freire MG, Rocha MF, Sidrim JJ, Brilhante RS, Teixeira EH, Campello CC, Pinheiro DC, Lima MG. Antifungal and marker effects of Talisia esculenta lectin on Microsporum canis in vitro. J Appl Microbiol. 2009;107:2063–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Charungchitrak S, Petsom A, Sangvanich P, Karnchanatat A. Antifungal and antibacterial activities of lectin from the seeds of Archidendron jiringa Nielsen. Food Chem. 2011;126:1025–32.CrossRefGoogle Scholar
  17. 17.
    Wang LC, Kang L, Hu TM, Wang JL. Abrin-a A chain expressed as soluble form in Escherichia coli from a PCR-synthesized gene is catalytically and functionally active. Biochimie. 2004;86:327–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen ZH, Sun XF, Tang KX. Cloning and expression of a novel cDNA encoding a mannose-blinding lectin from Dendrobium officinale. Toxicon. 2005;45:535–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Kheeree N, Sangvanich P, Puthong S, Karnchanatat A. Antifungal and antiproliferative activities of lectin from the rhizomes of Curcuma amarissima Roscoe. Appl Biochem Biotechnol. 2010;162:912–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Ciopraga J, Gozia O, Tudor R, Brezuica L, Doyle RJ. Fusarium sp. growth inhibition by wheat germ agglutinin. Biochim Biophys Acta. 1999;1428:424–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Freire MDM, Gomes VM, Corsini RE, Machado OLT, De Simone SG, Novello JC, Marangoni S, Macedo MLR. Isolation and partial characterization of a novel lectin from Talisia esculenta seeds that interferes with fungal growth. Plant Physiol Biochem. 2002;40:61–8.CrossRefGoogle Scholar
  22. 22.
    Moreira RA, Cavada BS. Lectin from Canavalia-Brasiliensis (Mart)—isolation, characterization and behavior during germination. Biol Plant. 1984;26:113.CrossRefGoogle Scholar
  23. 23.
    Cavada BS, Ramos MV, Cordeiro E, Grangeiro TB, Oliveira J, Carvalho A, Moreira R. Purification and partial characterization of a lectin from Dioclea virgata Benth seeds. R Bras Fisiol Veg. 1996;8:37–42.Google Scholar
  24. 24.
    Pinto LS, Nagano CS, Oliveira TM, Moura TR, Sampaio AH, Debray H, Pinto VP, Dellagostin OA, Cavada BS. Purification and molecular cloning of a new galactose-specific lectin from Bauhinia variegata seeds. J Biosci. 2008;33:355–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Leite JF, Assreuy AM, Mota MR, Bringel PH, Lacerda RR, Gomes VM, Cajazeiras JB, Nascimento KS, Pessoa HL, Gadelha CA, Delatorre P, Cavada BS, Santi-Gadelha T. Antinociceptive and anti-inflammatory effects of a lectin-like substance from Clitoria fairchildiana R. Howard seeds. Molecules. 2012;17:3277–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Teixeira EH, Napimoga MH, Carneiro VA, de Oliveira TM, Nascimento KS, Nagano CS, Souza JB, Havt A, Pinto VP, Goncalves RB, Farias WR, Saker-Sampaio S, Sampaio AH, Cavada BS. In vitro inhibition of oral streptococci binding to the acquired pellicle by algal lectins. J Appl Microbiol. 2007;103:1001–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Macedo DP, Farias AM, Lima Neto RG, Silva VK, Leal AF, Neves RP. Opportunistic yeast infections and enzymatic profile of the etiological agents. Rev Soc Bras Med Trop. 2009;42:188–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Kantarcioglu AS, Yucel A. Phospholipase and protease activities in clinical Candida isolates with reference to the sources of strains. Mycoses. 2002;45:160–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Silva JO, Ferreira JC, Candido RC. Enzymatic activity, slime production and antifungal agent sensitivity of Candida sp. Rev Soc Bras Med Trop. 2007;40:354–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Neufeld PM, dos Santos LH, Ribeiro MD, da Silva MF, Rocha ACM, da Silva M, Lázera MS. Prevalência e Susceptibilidade in vitro a Itraconazol e Anfotericina B de Isolados Clínicos de Candida. RBAC. 2009;41:119–25.Google Scholar
  31. 31.
    Bassetti M, Righi E, Costa A, Fasce R, Molinari MP, Rosso R, Pallavicini FB, Viscoli C. Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis. 2006;6:21.PubMedCrossRefGoogle Scholar
  32. 32.
    Ostrosky-Zeichner L, Pappas PG. Invasive candidiasis in the intensive care unit. Crit Care Med. 2006;34:857–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Cordeiro RA, Gomes VM, Carvalho AFU, Mello VMM. Effect of proteins from the red seaweed Hypnea musciformis (Wulfen) Lamouroux on the growth of human pathogen yeasts. Braz Arch Biol Technol. 2006;49:915–21.CrossRefGoogle Scholar
  34. 34.
    Lam SK, Ng TB. Lectins: production and practical applications. Appl Microbiol Biotechnol. 2011;89:45–55.PubMedCrossRefGoogle Scholar
  35. 35.
    Latge JP. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol. 2007;66:279–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Gabriel Baracy Klafke
    • 1
    • 2
    Email author
  • Gustavo Marçal Schmitt Garcia Moreira
    • 1
  • Leonardo Garcia Monte
    • 1
  • Juliano Lacava Pereira
    • 2
  • Tchana Martinez Brandolt
    • 2
  • Melissa Orzechowski Xavier
    • 2
  • Tatiane Santi-Gadelha
    • 3
  • Odir Antonio Dellagostin
    • 1
  • Luciano da Silva Pinto
    • 1
    • 4
  1. 1.Núcleo de Biotecnologia, Centro de Desenvolvimento TecnológicoUniversidade Federal de PelotasPelotas cityBrazil
  2. 2.Laboratório de Micologia, Faculdade de MedicinaUniversidade Federal do Rio GrandeRio Grande cityBrazil
  3. 3.Departamento de Biologia MolecularUniversidade Federal da ParaíbaJoão Pessoa cityBrazil
  4. 4.Laboratório de Biotecnologia Vegetal e Proteômica, Núcleo de Biotecnologia, Centro de Desenvolvimento TecnológicoUniversidade Federal de PelotasCapão do LeãoBrazil

Personalised recommendations