Advertisement

Mycopathologia

, Volume 175, Issue 1–2, pp 1–11 | Cite as

Mouse Strain-Dependent Differences in Estrogen Sensitivity During Vaginal Candidiasis

  • Paolo Mosci
  • Donatella Pietrella
  • Giovanni Ricci
  • Neelam Pandey
  • Claudia Monari
  • Eva Pericolini
  • Elena Gabrielli
  • Stefano Perito
  • Francesco Bistoni
  • Anna VecchiarelliEmail author
Article

Abstract

The animal models available for studying the immune response to genital tract infection require induction of a pseudo estrous state, usually achieved by administration of 17-β-estradiol. In our experimental model of vaginal candidiasis, under pseudo estrus, different strains of mice were used. We observed major differences in the clearance of Candida albicans infection among the different strains, ascribable to differing susceptibility to estradiol treatment. In the early phase of infection CD1, BALB/c, C57BL/6 albino and C57BL/6 mice were colonized to similar levels, while in the late phase of infection, BALB/c mice, which are considered genetically resistant to C. albicans infection, exhibited greater susceptibility to vaginal candidiasis than CD1 and C57BL/6 albino strains of mice. This was because estradiol induced “per se” enlarged and fluid-filled uteri, more pronounced in infected mice and consistently more evident in BALB/c and C57BL/6 mice than in CD1 mice. Unlike CD1, BALB/c and C57BL/6 mice showed a heavy fungal colonization of the uterus, even though C57BL/6 mice apparently cleared C. albicans from the vagina. The presence of C. albicans in the vagina and uterus was accompanied by a heavy bacterial load. Collectively these observations prompted us to carry out a careful analysis of estradiol effects in a mouse model of vaginal infection.

Keywords

Pseudo estrous condition C. albicans Vaginal infection Vaginal candidiasis Genital tract infections 

Notes

Acknowledgments

This paper was supported by the Fondazione Cassa di Risparmio di Perugia, project number 2010.011.0398. We thank Catherine Macpherson for editorial assistance.

Conflict of interest

The authors declare there are no conflicts of interest.

References

  1. 1.
    Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369(9577):1961–71. doi: 10.1016/S0140-6736(07)60917-9.PubMedCrossRefGoogle Scholar
  2. 2.
    Kennedy MA, Sobel JD. Vulvovaginal candidiasis caused by non-albicans candida species: new insights. Curr Infect Dis Rep. 2010;12(6):465–70. doi: 10.1007/s11908-010-0137-9.PubMedCrossRefGoogle Scholar
  3. 3.
    Dennerstein GJ, Ellis DH. Oestrogen, glycogen and vaginal candidiasis. Aust N Z J Obstet Gynaecol. 2001;41(3):326–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Naglik JR, Fidel PL Jr, Odds FC. Animal models of mucosal Candida infection. FEMS Microbiol Lett. 2008;283(2):129–39. doi: 10.1111/j.1574-6968.2008.01160.x.PubMedCrossRefGoogle Scholar
  5. 5.
    Dalal SJ, Estep JS, Valentin-Bon IE, Jerse AE. Standardization of the Whitten effect to induce susceptibility to Neisseria gonorrhoeae in female mice. Contemp Top Lab Anim Sci. 2001;40(2):13–7.PubMedGoogle Scholar
  6. 6.
    Yadav M, Gupta I, Malla N. Kinetics of immunoglobulin G, M, A and IgG subclass responses in experimental intravaginal trichomoniasis: prominence of IgG1 response. Parasite Immunol. 2005;27(12):461–7. doi: 10.1111/j.1365-3024.2005.00800.x.PubMedCrossRefGoogle Scholar
  7. 7.
    McGowin CL, Spagnuolo RA, Pyles RB. Mycoplasma genitalium rapidly disseminates to the upper reproductive tracts and knees of female mice following vaginal inoculation. Infect Immun. 2010;78(2):726–36. doi: 10.1128/IAI.00840-09.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng G, Yeater KM, Hoyer LL. Cellular and molecular biology of Candida albicans estrogen response. Eukaryot Cell. 2006;5(1):180–91. doi: 10.1128/EC.5.1.180-191.2006.PubMedCrossRefGoogle Scholar
  9. 9.
    Clemons KV, Spearow JL, Parmar R, Espiritu M, Stevens DA. Genetic susceptibility of mice to Candida albicans vaginitis correlates with host estrogen sensitivity. Infect Immun. 2004;72(8):4878–80. doi: 10.1128/IAI.72.8.4878-4880.2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Spearow JL, O’Henley P, Doemeny P, Sera R, Leffler R, Sofos T, et al. Genetic variation in physiological sensitivity to estrogen in mice. APMIS. 2001;109(5):356–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Enjalbert B, Rachini A, Vediyappan G, Pietrella D, Spaccapelo R, Vecchiarelli A, et al. A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect Immun. 2009;77(11):4847–58. doi: 10.1128/IAI.00223-09.PubMedCrossRefGoogle Scholar
  12. 12.
    Pietrella D, Angiolella L, Vavala E, Rachini A, Mondello F, Ragno R, et al. Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection. BMC Complement Altern Med. 2011;11:18. doi: 10.1186/1472-6882-11-18.PubMedCrossRefGoogle Scholar
  13. 13.
    Pietrella D, Rachini A, Torosantucci A, Chiani P, Brown AJ, Bistoni F, et al. A beta-glucan-conjugate vaccine and anti-beta-glucan antibodies are effective against murine vaginal candidiasis as assessed by a novel in vivo imaging technique. Vaccine. 2010;28(7):1717–25. doi: 10.1016/j.vaccine.2009.12.021.PubMedCrossRefGoogle Scholar
  14. 14.
    Abdelwahab MG, Sankar T, Preul MC, Scheck AC. Intracranial implantation with subsequent 3D in vivo bioluminescent imaging of murine gliomas. J Vis Exp. 2011;57:e3403. doi: 10.3791/3403 PubMedGoogle Scholar
  15. 15.
    Ashman RB. Protective and pathologic immune responses against Candida albicans infection. Front Biosci. 2008;13:3334–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Ashman RB, Fulurija A, Papadimitriou JM. Strain-dependent differences in host response to Candida albicans infection in mice are related to organ susceptibility and infectious load. Infect Immun. 1996;64(5):1866–9.PubMedGoogle Scholar
  17. 17.
    Calderon L, Williams R, Martinez M, Clemons KV, Stevens DA. Genetic susceptibility to vaginal candidiasis. Med Mycol. 2003;41(2):143–7.PubMedGoogle Scholar
  18. 18.
    Packiam M, Veit SJ, Anderson DJ, Ingalls RR, Jerse AE. Mouse strain-dependent differences in susceptibility to Neisseria gonorrhoeae infection and induction of innate immune responses. Infect Immun. 2010;78(1):433–40. doi: 10.1128/IAI.00711-09.PubMedCrossRefGoogle Scholar
  19. 19.
    Murakami Y, Otsuki M, Kusumoto K, Takeuchi S, Takahashi S. Estrogen inhibits interleukin-18 mRNA expression in the mouse uterus. J Reprod Dev. 2005;51(5):639–47.PubMedCrossRefGoogle Scholar
  20. 20.
    Otsuki M, Kusumoto K, Murakami Y, Kanayama M, Takeuchi S, Takahashi S. Expression of interleukin-18 receptor mRNA in the mouse endometrium. J Reprod Dev. 2007;53(1):59–68.PubMedCrossRefGoogle Scholar
  21. 21.
    Fidel PL Jr, Cutright J, Steele C. Effects of reproductive hormones on experimental vaginal candidiasis. Infect Immun. 2000;68(2):651–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Styrt B, Sugarman B. Estrogens and infection. Rev Infect Dis. 1991;13(6):1139–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Salem ML. Estrogen, a double-edged sword: modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production. Curr Drug Targets Inflamm Allergy. 2004;3(1):97–104.PubMedCrossRefGoogle Scholar
  24. 24.
    Relloso M, Aragoneses-Fenoll L, Lasarte S, Bourgeois C, Romera G, Kuchler K, et al. Estradiol impairs the Th17 immune response against Candida albicans. J Leukoc Biol. 2012;91(1):159–65. doi: 10.1189/jlb.1110645.PubMedCrossRefGoogle Scholar
  25. 25.
    Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28(5):521–74. doi: 10.1210/er.2007-0001.PubMedCrossRefGoogle Scholar
  26. 26.
    Seavey MM, Mosmann TR. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8(+) T cell priming in response to intravaginal immunization. Vaccine. 2009;27(17):2342–9. doi: 10.1016/j.vaccine.2009.02.025.PubMedCrossRefGoogle Scholar
  27. 27.
    Taylor-Robinson D, Furr PM, Hetherington CM. Neisseria gonorrhoeae colonises the genital tract of oestradiol-treated germ-free female mice. Microb Pathog. 1990;9(5):369–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Jerse AE. Experimental gonococcal genital tract infection and opacity protein expression in estradiol-treated mice. Infect Immun. 1999;67(11):5699–708.PubMedGoogle Scholar
  29. 29.
    Song W, Condron S, Mocca BT, Veit SJ, Hill D, Abbas A, et al. Local and humoral immune responses against primary and repeat Neisseria gonorrhoeae genital tract infections of 17beta-estradiol-treated mice. Vaccine. 2008;26(45):5741–51. doi: 10.1016/j.vaccine.2008.08.020.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Paolo Mosci
    • 1
  • Donatella Pietrella
    • 2
  • Giovanni Ricci
    • 3
  • Neelam Pandey
    • 2
  • Claudia Monari
    • 2
  • Eva Pericolini
    • 2
  • Elena Gabrielli
    • 2
  • Stefano Perito
    • 2
  • Francesco Bistoni
    • 2
  • Anna Vecchiarelli
    • 2
    Email author
  1. 1.Internal Medicine Section, Department of Veterinary Pathology, Diagnostic and Veterinary ClinicUniversity of PerugiaPerugiaItaly
  2. 2.Microbiology Section, Department of Experimental Medicine and Biochemical SciencesUniversity of PerugiaPerugiaItaly
  3. 3.Animal Facility LaboratoryUniversity of PerugiaPerugiaItaly

Personalised recommendations