Skip to main content
Log in

Antifungal Activity of Sodium Bicarbonate Against Fungal Agents Causing Superficial Infections

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Although sodium bicarbonate—NaHCO3 (SB) has many domestic and medical, traditional and empirical uses, only little scientific documentation of its activity is available. The aims of this study were to investigate the antifungal activity of SB on the three fungal groups (yeasts, dermatophytes and molds) responsible for human skin and nail infections. We first evaluated the in vitro antifungal activity of SB on 70 fungal strains isolated from skin and nail infections: 40 dermatophytes, 18 yeasts and 12 molds. A concentration of 10 g/L SB inhibited the growth of 80 % of all the fungal isolates tested on Sabouraud dextrose agar. The minimal inhibitory concentration 90 (MIC90) of SB measured on Sabouraud dextrose agar, Sabouraud dextrose broth and potato dextrose broth was 5 g/L for the yeasts, 20 g/L for the dermatophytes and 40 g/L for the molds. In a second step, we prospectively evaluated the ex vivo antifungal activity of SB on 24 infected (15 dermatophytes, 7 yeasts and 2 molds) clinical specimens (15 nails and 9 skin scrapings). The fungal growth was completely inhibited for 19 (79 %) specimens and reduced for 4 (17 %) specimens after 7 days of incubation on Sabouraud dextrose–chloramphenicol agar supplemented with 10 g/L of SB as compared to Sabouraud dextrose–chloramphenicol agar without SB. In conclusion, we documented the antifungal activity of SB on the most common agents of cutaneous fungal infection and onychomycosis, and we specified the effective concentrations for the different groups of pathogenic fungi. The mechanism of action of SB has yet to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schwartz RA. Superficial fungal infections. Lancet. 2004;364:1173–82.

    Article  PubMed  Google Scholar 

  2. Welsh O, Vera-Cabrera L, Welsh E. Onychomycosis. Clin Dermatol. 2010;28:151–9.

    Article  PubMed  Google Scholar 

  3. Moreno G, Arenas R. Other fungi causing onychomycosis. Clin Dermatol. 2010;28:160–3.

    Google Scholar 

  4. Dik AJ, van der Gaag DJ, van Slooten MA. Efficacy of salts against fungal diseases in glasshouse crops. Commun Agric Appl Biol Sci. 2003;68:475–85.

    PubMed  CAS  Google Scholar 

  5. Schirra M, D’Aquino S, Palma A, et al. Factors affecting the synergy of thiabendazole, sodium bicarbonate, and heat to control postharvest green mold of citrus fruit. J Agric Food Chem. 2008;56:10793–8.

    Article  PubMed  CAS  Google Scholar 

  6. Groeschke J, Solassol I, Bressolle F, et al. Stability of amphotericin B and nystatin in antifungal mouthrinses containing sodium hydrogen carbonate. J Pharm Biomed Anal. 2006;42:362–6.

    Article  PubMed  CAS  Google Scholar 

  7. Patel M, Shackleton JA, Coogan MM, et al. Antifungal effect of mouth rinses on oral Candida counts and salivary flow in treatment-naive HIV-infected patients. AIDS Patient Care STDS. 2008;22:613–8.

    Article  PubMed  Google Scholar 

  8. Clinical Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeast; approved standard, M27–A2. Wayne: Clinical Laboratory Standards Institute; 2002.

    Google Scholar 

  9. Clinical Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, M38-A. Wayne: Clinical Laboratory Standards Institute; 2002.

    Google Scholar 

  10. Clinical Laboratory Standards Institute (CLSI). Method for antifungal disk diffusion susceptibility testing in yeasts, approved guideline, M44-A. Wayne: Clinical Laboratory Standards Institute; 2004.

    Google Scholar 

  11. Palmer CL, Horst RK, Langhans RW. Use of bicarbonates to inhibit in vitro colony growth of Botrytis cinerea. Plant Dis. 1997;81:1432–8.

    Article  Google Scholar 

  12. Palou L, Smilanick JL, Usall J, et al. Control of postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate. Plant Dis. 2001;85:371–6.

    Article  Google Scholar 

  13. Rodriguez-Urra AB, Jimenez C, Duenas M, et al. Bicarbonate gradients modulate growth and colony morphology in Aspergillus nidulans. FEMS Microbiol Lett. 2009;300:216–21.

    Article  PubMed  CAS  Google Scholar 

  14. Jessup CJ, Warner J, Isham N, et al. Antifungal susceptibility testing of dermatophytes: establishing a medium for inducing conidial growth and evaluation of susceptibility of clinical isolates. J Clin Microbiol. 2000;38:341–4.

    PubMed  CAS  Google Scholar 

  15. Alio AB, Mendoza M, Zambrano EA, et al. Dermatophytes growth curve and in vitro susceptibility test: a broth micro-titration method. Med Mycol. 2005;43:319–25.

    Article  PubMed  CAS  Google Scholar 

  16. Ghannoum MA, Chaturvedi V, Espinel-Ingroff A, et al. Intra- and interlaboratory study of a method for testing the antifungal susceptibilities of dermatophytes. J Clin Microbiol. 2004;42:2977–9.

    Article  PubMed  CAS  Google Scholar 

  17. Verdolini R, Bugatti L, Filosa G, et al. Old fashioned sodium bicarbonate baths for the treatment of psoriasis in the era of futuristic biologics: an old ally to be rescued. J Dermatolog Treat. 2005;16:26–30.

    Article  PubMed  CAS  Google Scholar 

  18. Montville TJ, Goldstein PK. Sodium bicarbonate reduces viability and alters aflatoxin distribution of Aspergillus parasiticus in Czapek’s agar. Appl Environ Microbiol. 1987;53:2303–7.

    PubMed  CAS  Google Scholar 

  19. Corral LG, Post LS, Montville TJ. Antimicrobial activity of sodium bicarbonate. A research note. J Food Sci. 1988;53:981–2.

    Article  CAS  Google Scholar 

  20. Curran DM, Montville TJ. Bicarbonate inhibition of Saccharomyces cerevisiae and Hansenula wingei growth in apple juice. Int J Food Microbiol. 1989;8:1–9.

    Article  PubMed  CAS  Google Scholar 

  21. Aharoni Y, Fallik E, Copel A, et al. Sodium bicarbonate reduces postharvest decay development on melons. Postharvest Biol Technol. 1997;10:201–6.

    Article  CAS  Google Scholar 

  22. Smilanick JL, Margosan DA, Mlikota F, et al. Control of citrus green mold by carbonate and bicarbonate salts and the influence of commercial postharvest practices on their efficacy. Plant Dis. 1999;83:139–45.

    Article  CAS  Google Scholar 

  23. DePasquale DA, Montville TJ. Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi. Appl Environ Microbiol. 1990;56:3711–7.

    PubMed  CAS  Google Scholar 

  24. Ko IJ, Kim CW, Houh W, et al. Relationship between Candida albicans producing proteinase (CAPP) and its environmental pH–comparison with a case of trichophyton mentagrophytes. J Korean Med Sci. 1987;2:97–101.

    PubMed  CAS  Google Scholar 

  25. Banuelos MA, Sychrova H, Bleykasten-Grosshans C, et al. The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology. 1998;144(Pt 10):2749–58.

    PubMed  CAS  Google Scholar 

  26. Krauke Y, Sychrova H. Four pathogenic candida species differ in salt tolerance. Curr Microbiol. 2010;61:335–9.

    Google Scholar 

  27. Page MJ, Di Cera E. Role of Na+ and K+ in enzyme function. Physiol Rev. 2006;86:1049–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Letscher-Bru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letscher-Bru, V., Obszynski, C.M., Samsoen, M. et al. Antifungal Activity of Sodium Bicarbonate Against Fungal Agents Causing Superficial Infections. Mycopathologia 175, 153–158 (2013). https://doi.org/10.1007/s11046-012-9583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-012-9583-2

Keywords

Navigation